1. การแนะนำ
แว็กซ์ที่หายไป (การลงทุน) การคัดเลือกนักแสดง converts accurate sacrificial patterns—traditionally wax—into metal parts via a ceramic shell.
จุดแข็งหลักของมันคือ: การตกแต่งพื้นผิวที่ดีเยี่ยม, ความแม่นยำในมิติสูง, and the ability to cast complex geometries and high-performance alloys.
Process variants (wax grades, shell chemistry and core methods) let engineers trade cost vs fidelity and choose routes that work for stainless steels, โลหะผสมทองแดง, เหล็กกล้า, and — with special precautions — titanium and nickel superalloys.
2. กระบวนการหล่อขี้ผึ้งหาย
Typical sequence (high level):

- ลวดลาย: make wax (or castable resin) ลวดลาย(ส) — single piece or tree/bunch.
- การประกอบ: attach patterns to runners/gating to form a cluster.
- Invest / shell build: dip assembly in binder slurry + ปูนปั้น; repeat to build shell.
- Cure / แห้ง: gel and partially dry shells between coats; final drying.
- dewax: remove wax (steam or melt out).
- ความเหนื่อยหน่าย / ยิง: ramp to burn organics and stabilize shell.
- เท: melt and pour metal into preheated shell.
- การเขย่า & ทำความสะอาด: remove shell, cut gates, ทำความสะอาด.
- โพสต์กระบวนการ: heat treat, สะโพก (หากต้องการ), เครื่องจักรกล, การตกแต่งพื้นผิว, การตรวจสอบ.
3. Pattern materials: low-, ปานกลาง-, and high-temperature waxes
| Wax Type | Typical Melt Range (องศาเซลเซียส) | การใช้งานหลัก | ข้อดี | ข้อจำกัด |
| Low-temperature wax | ~45–80 °C | เครื่องประดับ, fine prototypes, small precision patterns | Easy injection/low energy dewax; fine finish | Soft — pattern creep; limited for large/complex trees |
| Medium-temperature wax | ~80–120 °C | วิศวกรรมทั่วไป: ชิ้นส่วนวาล์ว, ส่วนประกอบปั๊ม | Good dimensional stability and durability for tooling | Requires higher dewax energy; คุณสมบัติที่สมดุล |
| High-temperature wax / high-melting pattern materials | >120 องศาเซลเซียส (up to ~200 °C for specialized blends) | ใหญ่, heavy patterns; long cycle production; less pattern distortion | Better hot-strength and dimensional integrity; reduced pattern distortion | More difficult dewax/burnout; higher energy and tooling stress |
หมายเหตุ & guidance
- Choose wax by part size, tooling life and expected shell/build sequence. Low-temp wax is great for fine detail and low-volume but suffers creep for long cycles or warm shop areas.
Medium temp is the workhorse for engineering casting. High-temp waxes (and engineered pattern polymers) are used where handling or long shell builds risk distortion. - Pattern additives: plasticizers, ความคงตัว, flow improvers and colorants affect injection behavior, dewax residue and burnout gas evolution—specify foundry-approved formulations.
4. Pattern production: เครื่องมือ, injection wax, and additive patterns
- Injection molding: steel/aluminum dies for wax — low per-piece cost at volume with high surface quality. Tooling cost scale depends on complexity.
- 3D printed castable wax/resin patterns: SLA, DLP, material-jetting or castable wax printers eliminate tooling for prototypes and small runs.
Modern castable resins dewax cleanly and approach injection wax surface quality. - Pattern treeing and gating design: arrange patterns on a central sprue for efficient pouring and feeding; include sacrificial risers for shrink feed.
Use simulation for gating and feeding balance for large clusters.
5. Shell Systems: ซิลิกา-โซล, แก้วน้ำ, and Hybrid shells
The shell system is the single most important variable that determines surface fidelity, ความต้านทานความร้อน, permeability/venting, vacuum compatibility and alloy suitability in lost-wax casting.
Three practical families are used in modern shops:
- ซิลิกา-โซล (คอลลอยด์ซิลิกา) เปลือกหอย — the premium, high-fidelity route.
- แก้วน้ำ (sodium-silicate) เปลือกหอย — the economical, robust route for larger / steel/iron work.
- เปลือกลูกผสม — combine a fine, chemically resistant inner coat (silica-sol or zircon) with water-glass outer coats to balance cost and performance.
เปลือกซิลิกาโซล (ซิลิกาคอลลอยด์)
What it is and how it works
Silica-sol shells use a colloidal suspension of sub-micron silica particles as the binder.
The first coats (very fine wash) use the colloid to carry ultrafine stucco that records detail; subsequent coats build thickness and are consolidated by drying and high-temperature firing (sintering) that produces dense, strong shells.

ลักษณะสำคัญ:
- Surface fidelity: best available — as-cast Ra commonly ~0.6–3 µm with fine wash.
- เสถียรภาพทางความร้อน / ยิง: shells can be consolidated at 600–1,000 ° C (shop practice varies with stucco). High-temperature firing increases shell strength and thermal shock resistance.
- Vacuum/inert compatibility:excellent — silica-sol shells are compatible with vacuum and inert-atmosphere pours and are the usual choice for titanium, nickel and cobalt superalloys.
- Permeability control: can be tuned by stucco grading and firing to give controlled venting for high-value, tight castings.
- Contamination sensitivity:high — colloid stability is upset by ionic contamination (เกลือ, metal fines) and organics; slurry and plant cleanliness are critical.
- Typical first-coat stucco: sub-10 µm fused silica, zircon or zirconia for reactive interfaces.
- กรณีการใช้งานทั่วไป: aerospace turbine components, ซุปเปอร์อัลลอย, vacuum-poured titanium, การปลูกถ่ายทางการแพทย์, precision small parts.
เปลือกแก้วน้ำ (sodium-silicate)
What it is and how it works
Water-glass shells use an aqueous sodium (or potassium) silicate solution as binder.
Coats gel to a silica-like network by CO₂ gassing or chemical hardeners (acid salts), producing a rigid ceramic shell when combined with graded refractory stucco.

ลักษณะสำคัญ:
- Surface fidelity: good for general engineering — as-cast Ra typically ~2.5–8 µm depending on wash and stucco.
- ยิง: usually stabilized at ~400–700°C; shells are not sintered to the same extent as silica-sol systems.
- Vacuum compatibility:ถูก จำกัด — not ideal for vacuum/inert pours or the most reactive alloys.
- การซึมผ่านได้ / การระบายอากาศ: generally good for steels/irons; permeability tends to be coarser than optimized silica-sol shells.
- Curing method:CO₂ gassing (rapid gelation) or acid hardeners — fast, robust set on the shop floor.
- Contamination sensitivity: moderate — ionic contamination affects setting and gel uniformity but water-glass is generally more tolerant than silica-sol.
- Typical first-coat stucco: fine fused silica; zircon can be used for improved surface protection.
- กรณีการใช้งานทั่วไป: ตัววาล์ว, ตัวเรือนปั๊ม, large steel/iron parts, ฮาร์ดแวร์ทางทะเล, general industrial castings.
เปลือกลูกผสม (silica-sol or zircon inner coat + ชั้นนอกเคลือบแก้วน้ำ)
What it is and how it works
A common economic compromise: ก premium inner coat (silica-sol or zircon/zirconia wash) is applied first to capture detail and create a chemically resistant barrier, แล้ว ชั้นนอกเคลือบแก้วน้ำ are built to give bulk strength at lower cost.
ลักษณะสำคัญ:
- Surface fidelity & chemical barrier: inner silica-sol/zircon gives near-silica-sol surface quality and helps prevent metal-shell reactions at the metal interface.
- ค่าใช้จ่าย & การจัดการ: outer water-glass coats reduce total silica-sol usage and make the shell more robust for handling and large sizes.
- Vacuum compatibility: improved vs pure water-glass (thanks to inner coat) but still not as ideal as full silica-sol shells — useful for many stainless and some nickel alloys if melting/pour atmospheres are controlled.
- Typical uses: valve bodies with high-quality wetted surfaces, medium-value turbine parts where some vacuum compatibility is needed, applications where cost vs performance must be balanced.
6. Core technologies
- Soluble cores (wax or polymer cores made to dissolve): produce internal passages (ช่องระบายความร้อน); removed by hot water or solvent.
- Binder-fired ceramic cores (ซิลิกา, อลูมินา, เพทาย): stable at high temps for superalloys; require shell-core compatibility.
- 3แกนพิมพ์ D: binder-jet or SLA ceramic cores enable complex internal geometries without tooling.
Design for cores must consider core support, การระบายอากาศ, thermal expansion and chemical compatibility with molten metal.
7. การทำลายล้าง, ความเหนื่อยหน่าย & shell firing — practical schedules and control points

การทำลายล้าง
- Steam/autoclave dewax: common for conventional wax trees. Typical surface temp 100–120 °C; cycle minutes to hours depending on wax volume and tree size.
- Thermal dewax / solvent melt: used for some polymers—use solvent recovery and controls.
ความเหนื่อยหน่าย / burnout schedule (typical engineering example)
- Ramp: slow up through 100–200 °C to remove moisture/wax residues (≤3–5 °C/min recommended for thick shells to avoid steam blistering).
- Hold 1: 150–250 ° C (1–4 ชั่วโมง) to drive off low-boiling organics.
- Ramp 2: ~3 °C/min to 350–500 °C.
- Final hold: 4–8 hours at 350–700 °C depending on shell system and alloy. Silica-sol shells may be fired to 600–1000 °C for sintering/strength; water-glass shells commonly stabilized at 400–700 °C.
- Key controls: ramp rate, oxygen availability (avoid excessive oxidizing for reactive metal shells), and complete removal of organics to avoid gas evolution during pour.
Shell preheat before pour: shell preheat to 200–800 °C depending on alloy to minimize thermal shock and improve metal flow; เช่น, stainless pours commonly 200–450 °C preheat; superalloys require higher depending on shell.
8. เท: melt practice, vacuum/inert options and pouring parameters
- Melting furnaces: induction or resistance; degassing/filtration and fluxing for cleanliness.
- Pour temperatures (ทั่วไป):
-
- อลูมิเนียมอัลลอยด์: 650–720 °C
- โลหะผสมทองแดง: 1000–1200 ° C
- เหล็ก: 1450–1650 °C
- Nickel superalloys: 1400–1600+ °C (อัลลอย)
- Vacuum and inert pouring: mandatory for titanium and highly reactive alloys; vacuum reduces oxidation and metal-shell reactions.
- Pour mode: gravity pour vs bottom-pour ladle vs vacuum assisted — choose to minimize turbulence and entrained gases. Use filters in gating for inclusion control.
9. Materials commonly cast & special considerations
- สแตนเลส (300/400, ดูเพล็กซ์): good with both water-glass & ซิลิกา-โซล; control shell permeability and final preheat.
- คาร์บอน & low alloy steels, เหล็กดัด: well suited to water-glass shells; watch for scaling and shell erosion at high pour energies.
- โลหะผสมทองแดง (สีบรอนซ์, กับเรา): ทั่วไป; control superheat to avoid shell wash.
- อลูมิเนียมอัลลอยด์: possible but often cheaper by other casting methods; ensure venting/permeability.
- ไทเทเนียม & Ti alloys: reactive — prefer silica-sol shells, zircon/alumina first coats, vacuum melts, and inert atmospheres. Avoid water-glass unless barrier coats and specialist controls used.
- นิกเกิล & cobalt superalloys: use silica-sol shells, high-temp firing and vacuum/inert handling where needed.
10. Typical dimensional, surface and tolerance capabilities
- ความอดทนมิติ (typical as-cast): ±0.1–0.3% ของมิติ ขนาดเกลียว (เช่น, ±0.1–0.3 mm on 100 คุณสมบัติ MM).
- การตกแต่งพื้นผิว (Ra as-cast): silica-sol ~0.6–3.2 µm; water-glass ~2.5–8 µm.
- Linear shrinkage allowance: ~1.2–1.8% (โลหะผสม & foundry specify exact).
- Minimum practical wall thickness: jewelry/micro parts: <0.5 มม; engineering parts: 1.0–1.5 mm typical; structural thicker sections common.
- การทำซ้ำ: good foundry practice yields ±0.05–0.15% run-to-run on critical datums.
11. Common defects, root causes and remedies
| ข้อบกพร่อง | Symptoms | Typical root cause | วิธีการรักษา |
| Gas porosity | Spherical pores | Dissolved H₂ or trapped dewax gases | Improve degassing, filtrations; control dewax/burnout; vacuum pour |
| Shrinkage porosity | Irregular cavities at hot spots | Poor feeding; insufficient risering | Rework gating, add chills, use risers, intensify holding pressure |
| Hot tears / รอยแตก | Cracks during solidification | High restraint, sharp transitions | Add fillets, change section, modify gating, use chills |
| Shell cracking | Shell breaks pre-pour | Rapid drying, thick coats, poor cure | Slow drying ramps, thinner coats, improved CO₂ cure control |
Metal penetration / washout |
Rough surface, metal into shell | Weak first coat, high superheat | Improve first coat (fine stucco/zircon), reduce superheat, increase viscosity |
| การรวม / ตะกรัน | Non-metallics in casting | Melt contamination, poor filtration | Clean melt, use ceramic filters, skimming practice |
| Dimensional distortion | Out of tolerance | Pattern creep, thermal warping | Use high-temp wax, control pattern storage temp, improved shell rigidity |
12. Post-casting Processes
- การเขย่า & ceramic removal: mechanical or chemical methods.
- การรักษาความร้อน: การรักษาด้วยสารละลาย, อายุมากขึ้น (T6), anneal — alloy dependent. Typical solution temps: Al alloys ~520–540 °C; steels higher.
- กด isostatic ร้อน (สะโพก): reduces internal shrinkage porosity for fatigue-sensitive parts; typical HIP cycles depend on alloy (เช่น, 100–200 MPa at 450–900 °C).
- เครื่องจักรกล & จบ: critical bores, sealing faces machined to tolerance; ขัด, passivation or coating applied as required.
- NDT & การทดสอบ: เกี่ยวกับน้ำ, ความดัน, leak tests, X-ray/CT, อัลตราโซนิก, dye-penetrant, mechanical testing per spec.
13. การควบคุมกระบวนการ, การตรวจสอบ & qualification
- Shop QC metrics: slurry solids, ความหนืด, gel time, oven curves, dewax logs, burnout ramp charts, melt chemistry and degassing logs.
- Sample coupons: แรงดึง, ความแข็ง & metallography coupons cast in gating for representative microstructure and mechanical properties.
- NDT sampling: radiography and CT scanning for critical components; specify acceptance levels for porosity (vol% or max defect size).
- Statistical process control (สพีซี): apply to critical inputs (wash solids, ความหนาของเปลือก, melt hydrogen) and outputs (dimensional variation, porosity counts).
14. ความเข้าใจผิดทั่วไป & คำชี้แจง
“Lost Wax Casting Is Only for High-Precision Parts”
เท็จ. Water glass-based lost wax casting is cost-effective for medium-precision parts (± 0.3–0.5 มม.) - 40% of automotive lost wax castings use this variant.
“Low-Temperature Wax Is Inferior to Medium-Temperature Wax”
ขึ้นอยู่กับบริบท. Low-temperature wax is cheaper and suitable for low-precision, ชิ้นส่วนที่มีปริมาณมาก (เช่น, ฮาร์ดแวร์) — medium-temperature wax is only necessary for tighter tolerances.
“Silica Sol Is Always Better Than Water Glass”
เท็จ. Water glass is 50–70% cheaper and faster for medium-precision applications — silica sol is only justified for aerospace/medical parts requiring ±0.1 mm tolerance.
“Lost Wax Casting Has High Scrap Rates”
เท็จ. Silica sol lost wax casting has a scrap rate of 2–5% (comparable to die casting) — water glass has 5–10% (still lower than sand casting’s 10–15%).
“3D Printing Makes Lost Wax Casting Obsolete”
เท็จ. AM is ideal for prototypes/low volume, but lost wax casting is 5–10x cheaper for medium-to-high volume (>1,000 ชิ้นส่วน) and handles larger parts (ขึ้นไป 500 กิโลกรัม).
15. บทสรุป
The lost wax casting process remains a premier method for producing complex, high-fidelity metal components.
When you pair the right pattern material, shell chemistry และ melt/atmosphere practice with disciplined process control, lost-wax casting reliably creates parts that would be difficult or impossible by other means.
Modern enhancements (3รูปแบบการพิมพ์ D, hybrid shells, vacuum pouring and HIP) extend the process into new alloys and applications — but they also raise the need for careful specification, trialing and QA.
คำถามที่พบบ่อย
Which shell system should I choose for titanium?
ซิลิกา-โซล (ด้วยการเคลือบชั้นแรกเซอร์คอน/อลูมินา) + vacuum/inert melting and pouring. Water-glass is generally unsuitable without extensive barrier measures.
How fine can features be with lost-wax casting?
คุณสมบัติ <0.5 มม เป็นไปได้ (jewellery/precision); in engineering parts aim for ≥1 mm for robustness unless proven by trials.
Typical surface finish I can expect?
ซิลิกา-โซล: ~0.6–3.2 µm Ra; แก้วน้ำ: ~2.5–8 µm Ra. Fine washes and polishing of wax dies improve finish.
When is HIP recommended?
For fatigue-critical, pressure-containing, or aerospace parts where internal porosity must be minimized — HIP can dramatically improve fatigue life.
Can I use 3D printed patterns instead of wax tooling?
Yes — castable resins and printed wax reduce tooling time and cost for prototypes/low volumes. Ensure resin dewax characteristics and shell compatibility are validated.



