1. Bevezetés
Sand casting stands as one of the oldest and most versatile metal-forming processes.
By forcing molten metal into a sand-based mold, foundries produce everything from simple brackets to complex turbine housings.
Its enduring relevance stems from unmatched adaptability: it handles part sizes ranging from grams to over 100 tonna, works with nearly all casting alloys, and balances cost efficiency with design freedom.
This article explores its mechanics, anyagtudomány, alkalmazások, and competitive landscape, offering a technical deep dive for engineers and manufacturers.
2. Mi az a homoköntés?
A lényege, sand casting relies on a minta—an exact replica of the final part—placed inside a two-part mold comprising the cope (top half) és drag (bottom half).
Once the pattern sits in the flask, foundry sand mixed with binders (agyag, resin, or chemical hardeners) surrounds it.

After the sand hardens, removing the pattern leaves a cavity ready for metal.
Az alkalmazástól függően, foundries employ several mold types:
- Zöld homok: A mixture of silica sand, agyag (typically bentonite), and water. Green sand molds account for over 70% of global casting volume due to their low cost and reusability.
- Kémiai kötésű homok: Uses resins or phenolic binders to create molds with superior dimensional accuracy és felületkezelés.
- No-Bake (Air-Set) Homok: A two-component system that cures at room temperature, ideal for large or complex patterns.
Key Materials:
- Silica Sand (SiO₂): Constitutes 85–95% of mold sand, valued for its high melting point (1,713° C) and granular structure that traps air for permeability.
- Kötőanyagok: Organic (bentonite for green sand, phenolic for no-bake) or inorganic (nátrium-szilikát) to bind sand grains; their choice impacts mold strength, reusability, és a környezeti hatás.
- Adalékok: Szén (reduces metal penetration), sawdust (improves permeability), and defoamers (minimizes gas entrapment).
3. Types of Sand Casting
Sand casting isn’t just one single process—it comes in several “flavors,” each tailored to different production volumes, metal types, bonyolultság, and desired surface finish.

The main categories are:
Zöld homok öntés
- Forma anyaga: A mixture of silica sand, agyag (bentonite), víz, and sometimes additives (például. sea coal).
- Jellemzők:
-
- Mold is “green” (azaz. contains moisture) and reusable.
- Quick turnaround and very cost-effective for low-to-medium production runs.
- Fair surface finish (Ra ≈ 200–400 µin).
- Tipikus felhasználások: Autóalkatrészek (motorblokkok, hengerfejek), agricultural components, szivattyúház.
Dry Sand Casting
- Forma anyaga: Green-sand mold that is subsequently baked or air-dried to remove moisture.
- Jellemzők:
-
- Improved dimensional accuracy and surface finish over green sand (Ra ≈ 100–200 µin).
- Better moisture control reduces gas defects.
- Longer mold preparation time; best for medium runs.
- Tipikus felhasználások: Acélok, rozsdamentes acélok, larger castings requiring tighter tolerances.
Chemically Bonded (No-Bake & Cold-Box) Homoköntés
- No-Bake (Air-Set):
-
- Kötőanyag (phenolic, furan or sodium silicate + catalyst) mixed at room temperature.
- Molds cure over minutes to hours—no heating required.
- Cold-Box (Gas-Cured):
-
- Resin-coated sand packed into a metal flask and “cured” by passing an amine gas.
- Fast cure (másodpercig), excellent mold strength and fine detail.
- Jellemzők:
-
- Very good surface finish (Ra ≈ 50–100 µin).
- High-dimensional accuracy.
- Binder costs higher; molds are not reusable.
- Tipikus felhasználások: Repülési alkatrészek, hydraulic parts, instrument housings.
Coated Sand Casting
- Folyamat: Sand grains are coated with a thin resin layer, erős, heat-resistant mold.
- Jellemzők: Excellent surface quality, nagy szilárdság, minimális torzítás.
- Alkalmazások: Szelepek, szivattyú burkolatok, and small to medium-sized parts requiring tight tolerances.
Shell formázás
- Forma anyaga: Fine silica sand coated with a thermosetting resin to form a thin “shell.”
- Folyamat: Heated pattern creates a 3–10 mm thick shell; two halves are then joined.
- Jellemzők:
-
- Kiváló felületi kivitel (Ra ≈ 25–75 µin).
- Kiváló dimenziós pontosság.
- Higher tooling and resin costs—best for high-volume runs.
- Tipikus felhasználások: High-precision automotive gears, motorblokkok, szivattyú járókerekek.
Vákuum (V-Process) Homoköntés
- Forma anyaga: Unbonded dry silica sand contained in an airtight flask; vacuum draws the sand tightly against the pattern.
- Jellemzők:
-
- No chemical binder → virtually no gas defects.
- Jó felületkezelés (Ra ≈ 75–150 µin).
- Mold breakdown easy (just release vacuum).
- Equipment investment is higher; suited for medium-to-high volume.
- Tipikus felhasználások: Aluminum and copper alloy castings for aerospace, védelem, high-quality industrial parts.
4. Step-by-Step Process of Sand Casting

Minta tervezés & Anyagválasztás:
Engineers choose patterns based on part complexity and production volume: wooden patterns for prototypes, metal patterns for high-volume runs.
Digital tools like 3D scanning ensure precision, while CAD software accounts for shrinkage (PÉLDÁUL., 1.5% alumíniumhoz, 2% acélhoz).
Mold and Core Making Techniques
After the pattern setup, technicians pack sand around it in the cope and drag.
For internal features, they create magok—sand shapes bonded separately and placed within the mold. Core print design ensures correct positioning and support.
Összeszerelés: Kapu, Emelők, & Szellőzőnyílások:
The mold halves are joined, a gating system (sprue, futó, kapuk) designed to control metal flow and a felszálló (reservoir of molten metal) to compensate for shrinkage.
Vents ensure gas escape, preventing porosity. Modern foundries use computational fluid dynamics (CFD) to optimize these systems, reducing waste by 15–20%.
Olvasztó & Öntés:
Metals like gray iron (melting point 1,150°C), alumínium (660° C), vagy rozsdamentes acél (1,400° C) are heated 50–100°C above their melting point in furnaces (cupolas for iron, induction furnaces for non-ferrous metals).
Pouring speed and turbulence are critical: too fast risks oxide inclusions; too slow causes incomplete filling.
Hűtés, Shakeout, & Sand Reclamation:
Megszilárdulás után (minutes for small parts, hours for large castings), the mold is broken (shakeout), and the part is separated.
Sand is recycled: modern facilities reclaim 90–95% of sand via screening and magnetic separation, cutting material costs by 30%.
5. Common Metals and Alloys for Sand Casting
Sand casting accommodates a remarkably broad spectrum of engineering alloys.
Foundries select metals based on strength, korrózióállóság, hőstabilitás, és költség.

Táblázat: The common metals and alloys used in sand casting
| Alloy Category | Fokozat / Specifikáció | Key Composition | Szakítószilárdság | Kulcs attribútumok | Tipikus alkalmazások |
|---|---|---|---|---|---|
| Szürke vas | ASTM A48 Class 20–60 | 2.5–4.0 % C, 1.0–3.0 % És | 200-400 MPa | Kiváló rezgéscsillapítás; olcsó költség; jó megmunkálhatóság | Motorblokkok, szivattyúház, gépi bázisok |
| Csillapító vas | ASTM A536 Grades 60–40–18 to 105–70–03 | 3.0–4.0 % C, 1.8–2.8 % És, Mg or Ce spheroidizer | 400–700 MPa | Nagy szilárdság & szívósság; superior fatigue resistance | Steering knuckles, főtengelyek, nagy teherbírású szerelvények |
| Szénacél | AISI 1018–1045 | 0.18–0.45 % C, ≤0.50 % MN | 350–700 MPa | Balanced strength and weldability; mérsékelt költség | Tengelyek, fogaskerék, szerkezeti zárójel |
Ötvözött acél |
AISI 4130, 4140, 8620 | 0.15–0,25 % C; CR, MO, -Ben, Mn additions | 600-900 MPa (HT) | Enhanced hardness, kopásállóság, elevated-temperature performance | Landing gear, hidraulikus elosztók, high-pressure valves |
| Rozsdamentes acél | Beír 304 & 316 | 18–20 % CR, 8–12 % -Ben; 2–3 % MO (316) | 500-750 MPa | Kiváló korrózióállóság; good strength at up to 800 ° C | Food equipment, chemical plant parts, hőcserélők |
| Alumínium ötvözet | A356; 6061 | ~7 % És, 0.3 % Mg (A356); 1 % Mg, 0.6 % És (6061) | 200–350 MPA | Alacsony sűrűségű (2.7 G/cm³); jó hővezető képesség | Automotive wheels, engine housings, hőcsökkentés |
Bronz / Sárgaréz |
C932, C954, C83600 | 3–10 % SN (bronz); 60–70 % CU, 30–40 % Zn (sárgaréz) | 300–600 MPa | Jó kopásállóság; anti-seizure; vonzó kivitelben | Csapágyak, szivattyú járókerekek, dekoratív hardver |
| Magnézium ötvözet | AZ91D | 9 % Al, 1 % Zn, balance Mg | 200-300 MPa | Extremely low density (1.8 G/cm³); high specific strength | Aerospace housings, portable tool bodies |
6. A homoköntés előnyei
Low Tooling and Setup Cost
- Sand molds are inexpensive to produce (typically made from silica sand bonded with clay or chemical binders),
so the initial tooling cost is minimal compared to permanent-mold or die-casting processes. - This makes sand casting especially economical for small production runs, prototype parts, or one-off components.

Versatility in Part Size and Geometry
- Sand casting can accommodate very large or very small parts—blocks weighing several tons down to a few ounces.
- Complex internal geometries (aláhúzások, magok, hollows) can be formed by inserting sand cores before pouring, without expensive core-making dies.
Anyagok széles választéka
- Almost any castable alloy—ferrous (PÉLDÁUL., szürke vas, csillapító vas, acél) or non-ferrous (PÉLDÁUL., alumínium, bronz, réz, magnézium)—can be used in sand molds.
- This flexibility lets you choose the optimal material for strength, korrózióállóság, or thermal properties.
Reusability of Mold Materials
- After each casting cycle, the sand mixture can be reclaimed and reused multiple times (often 95–98% recovery), reducing waste and material cost.
- Modern reclamation systems (mechanikai, termikus, or chemical reclaimers) further enhance sustainability.
Rapid Turnaround for Prototypes
- Because tooling is simply a split pattern (often wooden or 3D-printed) rather than hardened steel, mold preparation is fast—ideal for design iterations.
- Engineers can go from CAD model to physical part in days rather than weeks, accelerating product development cycles.
7. Korlátozások & Technical Challenges of Sand Casting
Relatively Poor Surface Finish and Dimensional Accuracy
- Sand grains create a rough texture on the casting surface, often requiring additional machining or finishing to meet tight tolerances.
- Typical tolerances are ±0.5–1.5 mm for small parts and ±1.5–3.0 mm for larger sections, which is less precise than die-casting or investment casting.

Higher Risk of Defects
- Porozitás: Gas trapped in the mold or generated during solidification can form pores in the metal, gyengítve az alkatrészt.
- Sand Inclusions: Loose sand grains may erode from the mold walls into the molten metal, causing hard spots or surface blemishes.
- Misruns & Hideg bezárások: Inadequate metal flow or premature solidification can lead to incomplete filling or joins in the metal.
Longer Production Cycle Times
- Each casting requires mold preparation (csomagolás, core setting, mold assembly) and post-pour shake-out, which is more time-consuming than automated high-pressure processes.
- Cooling times can be substantial for thick or massive sections, slowing overall throughput.
Labor-Intensive Process
- Many operations—mold making, core setting, fettling—rely on skilled manual labor, increasing labor costs and variability between batches.
- Automation is possible but often expensive to implement for sand-based systems.
Environmental and Health Concerns
- Exposure to silica dust during mold handling poses respiratory hazards unless strict dust-control measures are in place.
- Spent molding sand and used chemical binders generate waste streams that must be reclaimed or treated to avoid soil and water contamination.
Limitations on Very Thin Sections
- Vékony falak (<3– 4 mm) are challenging because the sand may not support fine details, and the metal may cool and solidify before filling the mold completely.
- Achieving both thin sections and good surface definition often requires alternative processes like die-casting or investment casting.
8. Key Applications of Sand Casting
Autóipar
- Motorblokkok, hengerfejek, átviteli esetek, fék alkatrészek, felfüggesztés részei.
Űrrepülés & Védelem
- Turbine housings, motortartók, szerkezeti zárójel, missile components, aircraft landing gear parts.
Energia & Energiatermelés
- Turbinaházak, generator frames, szivattyúház, valve bodies for oil and gas equipment, hydroelectric components.
Építés & Nehéz gépek
- Csőszerelvények, szelep alkatrészek, structural steel parts, engine components for construction equipment, agricultural machinery parts (PÉLDÁUL., tractor housings).
Ipari felszerelés
- Pump and compressor casings, sebességváltó, machine tool bases, heavy-duty brackets, industrial valve bodies.
Tengeri & Hajógyártás
- Propeller hubs, motor alkatrészek, shipboard machinery parts, and marine pump housings.
General Manufacturing
- Artistic castings, custom mechanical parts, large-scale structural components, and prototypes for product development.
Custom Prototypes and Low-Volume Production
Végül, sand casting excels in rapid prototyping and small-batch work.
When design teams need functional metal prototypes—whether for validation of ergonomics or field testing under real-world loads—sand casting delivers parts in 3–5 days, összehasonlítva 2– 4 hét for permanent molds.
Its minimal tooling cost (gyakran alatta $200 mintázatonként) makes it ideal for pilot runs and specialized applications across robotics, orvostechnikai eszközök, and bespoke machinery.
9. Comparison with Alternative Casting Processes
When engineers evaluate casting methods, they weigh factors such as rész bonyolultsága, felszíni befejezés, dimensional tolerance, tooling cost, és termelési mennyiség.
Alatt, we compare sand casting against two widely used alternatives—befektetési casting és casting.
| Kritériumok | Homoköntés | Befektetési casting | Casting |
|---|---|---|---|
| Szerszámköltség | Alacsony: $50– 200 dollár formánként; ideal for prototypes and small runs | Közepestől magasig: $1,000–$5,000+ due to wax patterns and ceramic shells | Nagyon magas: $10,000–$100,000+ for steel dies; justified for mass production |
| Termelési kötet | Alacsonytól közepesig: 1 -hoz 10,000+ alkatrészek | Alacsonytól közepesig: 100 -hoz 1,000+ alkatrészek | Magas: 50,000+ parts per run |
| Part Size Range | Very large: grams to 50+ tonna | Kicsitől közepesig: up to ~50 kg | Kicsitől közepesig: jellemzően alatta 10 kg |
Materials Supported |
Extremely broad: öntöttvasak, acélok, rozsdamentes acélok, alumínium, bronz, magnézium, szuperötvözetek | Broad but mostly non-ferrous alloys (bronz, rozsdamentes acél, alumínium, kobaltötvözetek) | Limited to low melting point metals: alumínium, cink, magnézium |
| Felszíni befejezés (RA) | Mérsékelt: 6–12 um | Kiváló: ≤1 µm | Jó: 1–3 um |
| Mérettűrések | Mérsékelt: ±0.5% to ±1.5% | Szoros: ±0.1% to ±0.3% | Very tight: ±0.2% to ±0.5% |
| Átfutási idő | Short to moderate: 3 days to 2 hétig | Moderate to long: 2 -hoz 4 hétig | Very short: ciklusidők <30 másodpercig; overall lead time depends on die availability |
Bonyolultság & Részlet |
Jó, can create complex shapes with cores; some limitations on fine detail | Kiváló: capable of very fine detail and thin sections (<1 mm) | Mérsékelt: complex geometries possible, but limited by die design |
| Mechanikai tulajdonságok | Generally good; depends on alloy and cooling rates | High integrity, jó erő, és keménység | High strength and good surface integrity but limited alloy choices |
| Tipikus alkalmazások | Large machine parts, motorblokkok, szivattyúház, nehéz felszerelés | Turbina pengék, repülőgép -alkatrészek, intricate jewelry, orvosi implantátumok | Autóalkatrészek, elektronikai házak, hardver alkatrészek |
| Környezeti hatás | High recyclability of sand (90-95%) | More energy intensive due to wax and ceramic shell processing | High energy consumption in die production and metal injection |
| Cost per Part (Low Volumes) | Alacsony vagy közepes | Magas | Very high due to tooling amortization |
| Cost per Part (High Volumes) | Közepestől alacsonyig | Mérsékelt | Nagyon alacsony |
When to Choose Sand Casting?
- Alacsony- to Mid-Volume Production: Alatt 10,000 alkatrészek, sand’s low tooling outlay minimizes per-part cost.
- Large or Heavy Parts: Components over 50 kg vagy ig 50 tonna only suit sand molds.
- Különleges ötvözetek & High-Temperature Materials: Sand molds handle stainless, szuperötvözetek, and cast irons without die-wear concerns.
- Rapid Prototyping or Design Iteration: 3D-printed patterns and quick mold changes slash lead times to a few days.
- Complex Internal Geometry: Sand cores produce deep cavities and undercuts without expensive tooling modifications.
10. Következtetés
Sand casting endures as a foundational manufacturing method, egyensúlyozás economy, sokoldalúság, és scalability.
By integrating digital design, advanced binder chemistries, and real-time quality controls, today’s foundries overcome traditional limitations—producing reliable, complex castings across industries.
As sustainability and rapid prototyping pressures grow, sand casting’s unique combination of low entry cost, anyagi rugalmasság, és size capability ensures its continued relevance well into the future.
-Kor EZ, Készen állunk arra, hogy partnerüljünk veled ezen fejlett technikák kihasználásában az alkatrész -tervek optimalizálása érdekében, anyagválaszték, és a termelési munkafolyamatok.
Annak biztosítása, hogy a következő projekt meghaladja az összes előadást és a fenntarthatósági referenciaértéket.
Vegye fel velünk a kapcsolatot ma!
GYIK
What is the typical size range for sand-cast parts?
Parts can range from small components (PÉLDÁUL., zárójelben) to very large structures (PÉLDÁUL., hajócsavarok), with some foundries capable of casting parts weighing several tons.
What are common surface finish issues in sand casting?
Parts may have a rough surface texture due to the sand mold. Post-casting processes like machining, őrlés, or blasting are often used to improve finish.
Can sand casting be used for high-volume production?
While sand casting is feasible for low-to-medium volumes, high-volume production may be more cost-effective with methods like die casting due to faster cycle times and higher mold durability.
Is sand casting suitable for prototyping?
Igen, sand casting is often used for prototypes due to its low tooling costs and ability to produce functional parts quickly, even for complex designs.
How are cores used in sand casting?
Magok (made of sand or resin) form internal cavities or features in the casting.
They are placed in the mold before pouring and removed after solidification, often via vibration or melting.



