ASTM A352 LCC/LCB Cryogenic Ball Valves Manufacturers

ASTM A352 öntött acélok

Tartalom megmutat

1. Bevezetés

In engineering environments where sub-zero performance is critical, material reliability cannot be compromised.

ASTM A352 is a widely recognized specification developed by ASTM International that addresses this very concern—covering cast carbon and low-alloy steels intended for nyomást tartalmazó alkatrészek that operate in low-temperature service conditions.

These steels are essential in industries such as LNG, kriogenika, olaj- és gáz, és energiatermelés, where mechanical integrity under cold stress is non-negotiable.

This article provides a comprehensive analysis of ASTM A352, exploring its metallurgical principles, mechanikai követelmények, alkalmazások, and manufacturing implications

to support engineers, specifikátorok, and procurement professionals in making informed material choices.

2. Scope and Purpose of ASTM A352

ASTM A352 covers castings for pressure-retaining parts designed to operate at low temperatures down to -50°F (-46° C) or even lower, évfolyamtól függően.

ASTM A352 LCB LCC kriogén golyóscsap
ASTM A352 LCB/LCC Cryogenic Ball Valve

It ensures that the cast steel maintains ductility, szívósság, and resistance to brittle fracture when exposed to these demanding environments.

Unlike ASTM A216 (for general-purpose cast carbon steels) or A351 (for corrosion-resistant austenitic stainless castings), A352 is tailored to low-temperature applications.

It is frequently dual certified with ASME SA352, making it suitable for pressure vessel and piping code compliance.

3. Classification of ASTM A352 Grades

ASTM A352 includes a range of cast carbon and low-alloy steel grades specifically engineered for low-temperature service in pressure-containing components.

The classification is based on kémiai összetétel, mechanikai teljesítmény, és service conditions.

ASTM A352 LCB Three Way Ball Valve
ASTM A352 LCB Three-Way Ball Valve

These grades are broadly grouped into szénacélok, alacsony ötvözött acélok, és martenzites rozsdamentes acélok, each tailored to meet specific operational demands.

Below is a detailed classification of the most common ASTM A352 grades:

Fokozat Beír Primary Alloying Elements Typical Service Temperature (° C) Közös alkalmazások
LCA Szénacél MN, C Down to -46°C Low-temp pipe fittings, karimák
LCB Szénacél (Enhanced) -Ben (~0.5%), MN, C Down to -46°C Szeleptestek, actuator housings
LCC Szénacél (High Impact) -Ben (~ 1,0%), MN, C Down to -46°C Pressure-retaining parts, cryogenic valves
LC1–LC9 Alacsony ötvözött acélok Változó: -Ben, CR, MO, CU -46°C to -100°C+ (ötvözettől függően) Specialty pressure equipment in harsh environments
CA6NM Martenzites rozsdamentes acél 13CR, 4-Ben Down to -60°C Gőzturbina alkatrészek, seawater valves

UNS Number Mapping

Each ASTM A352 grade also has a corresponding Unified Numbering System (MINKET) designation to support traceability and alloy standardization:

  • LCA – UNS J03000
  • LCB – UNS J03001
  • LCC – UNS J03002
  • CA6NM – UNS J91540

Comparison to Wrought Equivalents

While ASTM A352 governs öntvény termékek, many of its grades can be loosely compared to wrought steel specifications used in similar applications. Például:

  • A352 LCC roughly parallels ASTM A350 LF2 (forged carbon steel)
  • CA6NM is metallurgically similar to wrought 13-4 rozsdamentes acél (AISI 410 with Ni)

4. Chemical Requirements

The table summarizes typical maximum and minimum composition ranges:

Elem LCB (%) LCC (%) LC1/LC2 (%) LCB-CR (%) Funkció
Szén (C) 0.24 - - 0.32 0.24 - - 0.32 0.24 - - 0.32 0.24 - - 0.32 Base strength and hardness
Mangán (MN) 0.60 - - 1.10 0.60 - - 1.10 0.60 - - 1.10 0.60 - - 1.10 Deoxidáció, gabonafinomítás
Szilícium (És) 0.40 - - 0.60 0.40 - - 0.60 0.40 - - 0.60 0.40 - - 0.60 Folyékonyság, deoxidáció
Foszfor (P) ≤ 0.025 ≤ 0.025 ≤ 0.025 ≤ 0.025 Control brittle segregation
Kén (S) ≤ 0.015 ≤ 0.015 ≤ 0.015 ≤ 0.015 Control sulfide inclusions
Nikkel (-Ben) - - - - - - 1.00 - - 2.00 Enhances low-temperature toughness (CR variant)
Króm (CR) - - - - - - 0.25 - - 0.50 Corrosion/pitting resistance (CR variant)
Molibdén (MO) - - - - - - 0.25 - - 0.50 Strength at elevated/low temperatures
Vanádium (V) 0.05 - - 0.15 0.05 - - 0.15 0.05 - - 0.15 0.05 - - 0.15 Gabonafinomítás, szakítószilárdság
Réz (CU) - - ≤ 0.40 - - - - Improves as-cast machinability
Nitrogén (N) ≤ 0.012 ≤ 0.012 ≤ 0.012 ≤ 0.012 Controlled to prevent blowholes
Alumínium (Al) 0.02 - - 0.05 (maximum) 0.02 - - 0.05 0.02 - - 0.05 0.02 - - 0.05 Inclusion modification (deoxidálószer)

Influence of Alloying Elements on Low-Temperature Toughness

  • Szén (0.24–0.32%): A balance between strength and toughness; excessive carbon (> 0.32%) can increase hardness and reduce Charpy energy at −50 °F and below.
  • Mangán (0.60–1,10%): Promotes deoxidation during melting and contributes to solid-solution strengthening.
    Mn also helps refine pearlite/pearlitic-ferrite mixtures during heat treatment, a szívósság javítása.
  • Nikkel (1.00–2,00%) (LCB-CR only): Nickel significantly enhances curve shift (NDT shift) in the Charpy transition region, allowing steels to maintain ductile behavior at lower temperatures.
  • Króm (0.25–0.50%) és molibdén (0.25–0.50%): These elements combine to form karbidok (Cr₇C3, Mo₂C) that retard grain growth during heat treatment and improve edzhetőség,
    thereby improving both tensile strength and low-temperature toughness.
  • Vanádium (0.05–0,15%): Acts as a potent grain refiner by forming fine VC precipitates, which pin austenite grain boundaries during casting and heat treatment.
    A finer grain size (ASTM 6–8) directly correlates with higher Charpy V-notch energy at cryogenic temperatures.

5. Fizikai tulajdonságok

Density and Thermal Conductivity

  • Sűrűség: Hozzávetőlegesen 7.80 G/cm³ (0.283 lb/in³) for all A352 grades, since the alloying additions (MO, -Ben, CR, V) are relatively minor (≤ 3% total).
  • Hővezető képesség:
    • As-Cast: ~ 30 W/m · k at 20 ° C.
    • Normalized/Tempered: Slightly reduced (~ 28 W/m · k) due to finer grain structure and tempered carbides.
    • Cryogenic Effect: At −100 °C, conductivity rises modestly (to ~ 35 W/m · k) because phonon scattering decreases,
      which can be beneficial for applications requiring rapid heat transfer (PÉLDÁUL., cryogenic valves).

Termikus tágulási együttható (CTE) at Cryogenic Temperatures

  • CTE (20 °C to −100 °C): ~ 12 × 10-6/°C
  • CTE (−100 °C to −196 °C): ~ 11 × 10-6/°C

Compared to austenitic stainless steels (≈ 16 × 10-6/°C), A352 cast steel exhibits lower thermal expansion, which is advantageous when bolting or sealing with materials having similar CTEs (PÉLDÁUL., szénacélok).

Designers must still account for differential expansion when mating with alumínium vagy réz ötvözetek, especially in cryogenic applications.

6. Mechanical Properties of ASTM A352 Cast Steels

ASTM A352 cast steels are specifically engineered for applications requiring high strength and excellent toughness at low or cryogenic temperatures. The mechanical properties vary slightly among the grades based on chemical composition and heat treatment processes. Below is a comparison of several commonly used A352 grades.

ASTM A352 LCC Butterfly Valve Body
ASTM A352 LCC Butterfly Valve Body

Typical Mechanical Properties by Grade

Fokozat Beír Szakítószilárdság (MPA / ksi) Hozamszilárdság (MPA / ksi) Meghosszabbítás (%) Impact Energy at −46°C (J / ft-lb) Keménység (HB)
LCA Szénacél 415 min (60 ksi) 240 min (35 ksi) 22 min 27 J (20 ft-lb) 170–207
LCB Szénacél 485–655 (70–95 ksi) 250 min (36 ksi) 22 min 27 J (20 ft-lb) 170–229
LCC Szénacél 485–655 (70–95 ksi) 250 min (36 ksi) 22 min 27 J (20 ft-lb) 170–229
LC2 Gyengén ötvözött acél 485–655 (70–95 ksi) 275 min (40 ksi) 20 min 27 J (20 ft-lb) 179–229
LC2-1 Gyengén ötvözött acél 550–690 (80–100 ksi) 310 min (45 ksi) 20 min 27 J (20 ft-lb) 197–235
LC3 Gyengén ötvözött acél 585–760 (85–110 ksi) 310 min (45 ksi) 20 min 27 J (20 ft-lb) 197–241
CA6NM
13% CR, 4% Ni Martensitic SS 655–795 (95–115 ksi) 450–550 (65–80 ksi) 15–20 40–120 J (30–90 ft-lb) depending on heat treatment 200–240
CA15 13% Cr Martensitic SS 620–760 (90–110 ksi) 450 min (65 ksi) 15–20 20–40 J (15–30 ft-lb) 200–240
CF8M Austenitic Stainless (316 típus) 485 min (70 ksi) 205 min (30 ksi) 30 min Not typically used for impact service 150–180
CD4MCuN Duplex rozsdamentes acél 655–795 (95–115 ksi) 450 min (65 ksi) 20–25 70–100 J (50–75 ft-lb) 200–250

Notes on Special Grades

  • CA6NM: Widely used in hydroelectric turbines, szeleptestek, and pump casings for its excellent cavitation resistance, hegeszthetőség, és ütközési szilárdság at subzero temperatures.
  • CA15: Offers good hardness and corrosion resistance but lower impact toughness than CA6NM, alkalmasabbá téve azt moderate-pressure environments.
  • CF8M (316 egyenértékű): Although not typically part of A352, it is often cast under ASTM A743 and used in corrosive but non-low-temperature körülmények.
  • CD4MCuN: A duplex stainless grade with a strong balance of corrosion resistance, erő, and impact performance; ideal for aggressive environments like chloride-bearing solutions.

7. Casting and Manufacturing Processes of ASTM A352 Cast Steels

Casting Process Overview

ASTM A352 cast steels are typically produced using homoköntés vagy befektetési casting, with the choice depending on the complexity, méret, and required tolerances of the part.

ASTM A352 LCC Non Return Valve
ASTM A352 LCC Non-Return Valve
  • Homoköntés: This remains the most common method for producing large valve bodies, szivattyúház, and flanges specified under ASTM A352.
    It offers cost-effective flexibility for intricate shapes and thick sections.
    Viszont, it requires meticulous control of mold materials and pouring parameters to minimize defects such as porosity and shrinkage.
  • Befektetési casting: Kisebbre, more complex components requiring superior surface finish and dimensional precision, investment casting is sometimes employed.
    This method yields fewer casting defects and reduces machining allowances, albeit at higher costs.

Hőkezelés

Post-casting, ASTM A352 steels undergo stringent normalizing and tempering to enhance mechanical properties:

  • Normalizálás: Typically performed at 900-950°C, normalizing refines grain structure, enyhíti a belső feszültségeket, and improves toughness.
  • Edzés: Carried out at 600-700°C, tempering balances strength and ductility while reducing brittleness.
  • Heat treatment cycles are strictly monitored and documented to ensure compliance with ASTM specifications and to achieve uniform mechanical properties throughout the casting.

Megmunkálás és kikészítés

Due to complex geometries, cast ASTM A352 components often require megmunkálás to achieve final dimensions and tolerances. This includes:

  • CNC megmunkálás for valve seats, karimák, és kritikus tömítőfelületek.
  • Felszíni kezelések such as grinding and polishing to enhance corrosion resistance and sealing performance.
  • Machining parameters are optimized based on steel grade and hardness to minimize tool wear and surface defects.

8. Advantages and Limitations of ASTM A352 Cast Steels

ASTM A352 cast steels are widely used in critical applications where strength, szívósság, and resistance to low-temperature embrittlement are essential.

Control Valve ASTM A352 LCB
Control Valve ASTM A352 LCB

Advantages of ASTM A352 Cast Steels

Superior Low-Temperature Toughness

ASTM A352 grades—particularly LCA, LCB, and LCC—are specifically designed for cryogenic and sub-zero service.

With minimum Charpy V-notch impact energy requirements of 27 J at −46°C, these materials ensure structural integrity and reduce the risk of brittle fracture under extreme conditions.

Excellent Pressure Retention

Due to their mechanical strength and ductility, A352 cast steels are ideally suited for nyomást tartalmazó alkatrészek, mint például a szelepek, szivattyúk, és karimák.

Grades like CA6NM also offer enhanced yield strength (>550 MPA), supporting higher-pressure system designs.

Good Castability

The A352 specification covers öntvény steel components, allowing for complex geometries and near-net-shape manufacturing.

This flexibility reduces the need for extensive machining and enables the production of intricate internal passageways or housings that are otherwise impractical to forge or machine.

Sokoldalúság az iparágakban

A352 castings are used in diverse sectors—including oil & gáz, petrolkémiai, energiatermelés,

and cryogenics—due to their mechanical reliability, dimenziós pontosság, and performance in low-temperature or high-pressure conditions.

Korrózió és kopásállóság (in Alloyed Grades)

Alloy grades like CA6NM offer a combination of korrózióállóság és moderate hardness (200–260 HBW),

making them suitable for service in nedves, savas, vagy sós környezetben, such as subsea equipment or chemical plants.

Standards-Based Assurance

Being governed by ASTM standards, these castings are subjected to rigorous quality controls—covering heat treatment, kémiai összetétel, and mechanical testing—which ensures global reliability and traceability.

Limitations of ASTM A352 Cast Steels

Casting Defects and Variability

As with any casting process, zsugorodási üregek, porozitás, vagy zárványok may occur. These defects, if not identified and corrected, can compromise mechanical performance.

Advanced inspection methods like radiography and ultrasonic testing are often required for critical parts.

Lower Toughness Compared to Forged Materials

Despite good ductility, cast steels generally exhibit lower fracture toughness than wrought or forged equivalents due to grain structure and potential casting flaws.

This may limit their use in ultra-critical fatigue environments.

Hőkezelés érzékenysége

Megfelelő normalizing and tempering are essential to achieve the required mechanical properties.

Inadequate or uneven heat treatment can lead to maradék stressz, torzítás, vagy akár microcracking—particularly in thick or complex castings.

Hegeszthetőségi aggályok

Néhány fokozat, particularly alloyed steels (PÉLDÁUL., CA6NM), may require strict welding procedures, beleértve preheating, hegesztés utáni hőkezelés (Pwht),

és filler metal selection to avoid embrittlement or degradation of corrosion resistance.

Limited Corrosion Resistance in Carbon Grades

Grades such as LCA, LCB, and LCC have limited inherent corrosion resistance.

They often require bevonatok, bélés, vagy external protection when used in aggressive environments or for long-term service.

Cost Considerations in Alloyed Versions

High-alloy grades like CA6NM or LC3 involve increased costs due to alloying elements (CR, -Ben, MO) and more demanding casting and heat treatment processes.

9. Alkalmazások és esettanulmányok

Cryogenic Vessels and LNG Storage

  • LCB and LCC Valve Bodies:
    • LNG infrastructure demands valves that remain ductile at −162 °C (−260 °F).
      While LCC’s −100 °F CVN rating does not ensure full ductility at −260 °F, it provides a safety margin above the brittle–ductile transition.
    • Esettanulmány: An LNG terminal in Northern Europe replaced A216 WCB valve bodies (which fractured during cooldown tests) with A352 LCC castings.
      Post-installation, no low-temperature fissures were observed after 500 thermal cycles.
A352 LCB/LCC Cryogenic Globe Valve
A352 LCB/LCC Cryogenic Globe Valve

Olaj & Gáz: Szelepek, Karimák, and Couplings

  • Savanyú szolgáltatás (H₂S Environment):
    • LCB-CR castings with 1.5% -Ben, 0.35% CR, és 0.30% Mo exhibit improved resistance to sulfide stress cracking (SSC).
    • Esettanulmány: Offshore wellhead assemblies in the North Sea transitioned from 13% Cr stainless steel to LCB-CR for some low-pressure components,
      reducing material cost by 20% without sacrificing sour gas compliance (NACE MR0175).

Energiatermelés: Steam and Boiler Components

  • Feedwater Pump Housings:
    • Operating at −20 °C és alacsony nyomású gőz, LCB castings replaced older A216 WCB flanged housings.
      Resulted in a 30% súlycsökkentés and improved fatigue life due to finer microstructure.
    • Esettanulmány: A combined-cycle power plant in Japan reported zero lap joints or core shift defects after implementing meticulous gating and chill practices for A352 LCB turbine bleed valve bodies.

Petrochemical Reactors and Pressure Vessels

  • Sub-Cooled Liquid Ethylene Pumps:
    • Ethylene plants store and pump ethylene at −104 °C.
      LCC pump casings ensured sufficient margin above the −73 °C certification, maintaining Charpy energy of 20 J at −104 °C during third-party inspection.
    • Esettanulmány: A U.S. Gulf Coast ethylene complex deployed LCC reactor nozzles.
      Felett 150,000 hours of service with no brittle fractures, even when unplanned warm-up to −50 °C was required during maintenance.

10. Comparison to Other Standards

When selecting materials for critical applications, understanding how ASTM A352 cast steels compare to other relevant standards is essential.

Standard Anyag típusa Hőmérsékleti tartomány Korrózióállóság Tipikus alkalmazások Kulcsfontosságú jellemzők
ASTM A352 Szén & Low-Alloy Cast Steels Cryogenic to ambient (down to −46°C and below) Mérsékelt (ötvözet függő) Szelepek, szivattyúk, nyomó edények Kiváló szívósság alacsony hőmérsékleten; heat treated
ASTM A216 Szénacél öntvények Ambient to high temperature Alacsony General pressure-containing parts Költséghatékony; not suitable for cryogenic service
ASTM A351 Austenit rozsdamentes acél Ambient to high temperature Magas Corrosive environments Kiváló korrózióállóság; less low-temp toughness
ASTM A217
Alloy Steel Castings (Króm-molibdén) High temperature (up to ~1100°F / 593° C) Közepes vagy magas High-temperature valve and pump parts Designed for elevated temperature service; jó erő & kúszó ellenállás
API 6A Szén & Ötvözött acél Olaj & gas wellhead service Változó Olajmező berendezések Meets stringent oilfield service requirements
-Ben 10213 Szén & Low-Alloy Cast Steels Similar to ASTM A352 Mérsékelt Pressure vessels and valves European standard equivalent
JIS G5121 Szén & Low-Alloy Cast Steels Similar to ASTM A352 Mérsékelt Pressure components Japanese standard equivalent

11. Emerging Trends and Future Developments

Advanced Metallurgy: Cleaner Steelmaking and Grain Refinement

  • Microalloying with Niobium (Földrajzi jelzés) and Titanium (-Y -az):
    • Nb and Ti form (Földrajzi jelzés,-Y -az)C precipitates that pin grain boundaries more effectively than V alone, amihez vezet ASTM 9–10 grain sizes even in large-section castings.
    • Improved cryogenic toughness (CVN ≥ 30 J at −100 °F for LCC) demonstrated in prototype trials.
  • Vacuum Arc Remelting (MIÉNK):
    • For critical nuclear or deep-cryogenic castings, VAR eliminates dissolved gases and reduces inclusion content to < 1 ppm—yielding near-impervious components with CVN > 45 J at −150 °F (−100 °C).

Additív gyártás (AM) for Low-Temperature Steel Components

  • Electron-Beam Melting (EBM) és Szelektív lézerolvadás (SLM) of Nickel–Iron–Chromium powders allow near-net-shape production of small,
    bonyolult összetevők (PÉLDÁUL., cryogenic sensor housings) traditionally made from A352 castings.
  • Hybrid Casting–AM: Használata AM to produce molds with conformal cooling channels accelerates cycle times and improves microstructural homogeneity in castings.
    Foundry trials show reduced porosity and improved CVN by 15 %.

Digital Casting: Simulation and Quality Control

  • Számítási folyadékdinamika (CFD):
    • Virtual gating design to optimize metal flow, reducing turbulence-related defects.
    • Prediction of megszilárdulási zsugorodás és porozitás felhasználás finite-element analysis (Fea).
  • Real-Time Monitoring:
    • Beágyazás thermocouples és pressure transducers in molds provides instantaneous feedback on pour temperature and pressure, allowing closed-loop control to correct anomalies on the fly.
  • Machine Learning (ML) for Defect Prediction:
    • ML algorithms trained on historic casting data predict defective castings (> 90% pontosság) based on real-time sensor inputs (temperature gradient, gating pressure, furnace emissions).

Novel Coatings and Surface Treatments for Extreme Environments

  • Nanocomposite Coatings:
    • Ti-Al-N és CrN PVD coatings applied to internal passages of A352 castings demonstrate 300 % longer erosion life in cryogenic gas flows containing particulate matter.
  • Self-Healing Epoxy Liners:
    • Incorporation of microencapsulated healing agents that release polymers upon micro-crack formation, sealing pinholes in cryogenic piping without manual maintenance.
  • Gyémántszerű szén (DLC):
    • DLC coatings on pump impeller surfaces reduce friction and cavitation in LNG pumps, extending MTBF by 40%.

12. Következtetés

ASTM A352 is an essential material specification for engineers designing components exposed to low-temperature and high-pressure service.

Whether it’s in a cryogenic LNG terminal or an Arctic offshore platform, A352 grades like LCC, LCB, and CA6NM provide the strength, szívósság, and reliability demanded by modern infrastructure.

By understanding its metallurgical nuances, gyártási követelmények, and application relevance, industry professionals can confidently select and specify the right casting grade for safe, hosszú távú teljesítmény.

 

GYIK

What is ASTM A352 used for?

ASTM A352 is primarily used for manufacturing cast steel components such as valves, szivattyúk, and pressure vessels designed for low-temperature or cryogenic service.

Its high toughness and strength make it ideal for demanding industrial environments like chemical processing and power generation.

Can ASTM A352 castings be welded?

Igen, ASTM A352 cast steels can be welded.

Proper preheating, inter-pass temperature control, and post-weld heat treatment are recommended to maintain mechanical properties and avoid cracking.

Are ASTM A352 cast steels corrosion resistant?

ASTM A352 steels offer moderate corrosion resistance, which can be improved through surface treatments or coatings, depending on the service environment.

Görgessen a tetejére