1. Bevezetés
Csillapító vas, also known as nodular or spheroidal graphite iron, is a cast iron renowned for its excellent erő, hajlékonyság, és fáradtság ellenállás, owing to its graphite nodules.
Within the ASTM A536 standard, 65‑45‑12 denotes a grade with 65 ksi tensile strength, 45 ksi yield strength, and ≥12 % elongation—an ideal balance for many engineering applications.
This versatile material is extensively used in structural components, automotive systems, szivattyúk, és ipari felszerelés due to its robust mechanical performance and cost-effectiveness.
2. Mi az 65-45-12 Csillapító vas?
65-45-12 csillapító vas a ferritic-grade nodular cast iron A ASTM A536 specification.
The numbers in the designation refer to its minimum szakítószilárdság (65 ksi or 448 MPA), hozamszilárdság (45 ksi or 310 MPA), és meghosszabbítás (12%), representing a well-balanced combination of erő, hajlékonyság, and machinability.

Unlike gray iron, which contains flake graphite that weakens the metal’s structure, 65-45-12 ductile iron features gömbszerű (nodular) grafit embedded in a predominantly ferritic matrix.
This microstructure dramatically improves ütköző ellenállás, szívósság, és fatigue performance, making it suitable for components that must endure mechanical loads and vibration.
Csillapító vas 65-45-12 is widely used in industries such as autóipar, hidraulika, agriculture, és municipal infrastructure, where a balance of mechanical durability and castability is required.
It is often favored over gray iron for safety-critical or structurally loaded components, and it serves as a cost-effective alternative to cast steel in many medium-strength applications.
3. Kémiai összetétele 65-45-12 Csillapító vas
The chemical composition of 65-45-12 csillapító vas is engineered to promote the formation of nodular graphite within a predominantly ferritic matrix, which gives this material its characteristic combination of strength, hajlékonyság, and machinability.
Typical Chemical Composition
| Elem | Tipikus hatótávolság (%) | Funkció |
| Szén (C) | 3.40 - - 3.80 | Promotes graphite formation and influences strength and machinability |
| Szilícium (És) | 2.20 - - 2.80 | Enhances ferrite stability, supports graphite nodule formation |
| Mangán (MN) | ≤ 0.50 | Strengthens ferrite but excessive Mn can reduce ductility |
| Magnézium (Mg) | 0.03 - - 0.06 | Crucial for graphite spheroidization (nodular structure) |
| Foszfor (P) | ≤ 0.05 | Impurity; excess reduces ductility and toughness |
| Kén (S) | ≤ 0.02 | Impurity; counters magnesium’s nodularizing effect if too high |
| Réz (CU)(választható) | 0.1 - - 0.5 | Sometimes added to increase strength or improve machinability |
4. Mechanikai tulajdonságai 65-45-12 Csillapító vas
ASTM A536 Grade 65-45-12 csillapító vas is defined by its balance of strength, hajlékonyság, és keménység.
These properties make it a versatile engineering material suitable for both static and dynamic load-bearing applications.

Typical Mechanical Properties
| Ingatlan | Érték | Egységek |
| Szakítószilárdság (UTS) | ≥ 65 ksi (typically 450–550) | ksi (MPA) |
| Hozamszilárdság (0.2% ellensúlyozás) | ≥ 45 ksi (typically 310–360) | ksi (MPA) |
| Meghosszabbítás (in 2″) | ≥ 12 (can reach 15–18%) | % |
| Brinell keménység | 170 - - 210 | HBW |
| Rugalmassági modulus | ~24 × 10³ | ksi (165 GPA) |
| Kifáradási szilárdság (rotating beam, 10⁷ ciklusok) | ~30 ksi | ksi (207 MPA) |
5. Physical Properties of 65-45-12 Csillapító vas
A physical properties of ASTM A536 Grade 65-45-12 ductile iron provide a strong foundation for its mechanical performance and usability in industrial applications.
Typical Physical Properties
| Ingatlan | Tipikus érték & Egységek | Engineering Implications |
| Sűrűség | 7.0–7.3 g/cm³ | Nagy szilárdság-súly / súly arány; slightly lighter than carbon steel for weight-sensitive parts. |
| Olvadáspont | ~1150–1200 °C | Suitable for casting with relatively low melting energy requirements. |
| Rugalmassági modulus (E) | 160–170 GPa | Offers high stiffness for structural integrity in load-bearing applications. |
| Poisson aránya | 0.27–0.30 | Standard range for metallic materials; impacts stress-strain behavior. |
| Hővezető képesség | 36–46 W/m·K | Supports heat dissipation in engine blocks, szivattyúház, and rotating parts. |
| Hőtágulási együttható | 10.8–12.0 µm/m·°C | Low thermal growth ensures dimensional stability under thermal cycling. |
| Elektromos ellenállás | ~0.7–0.8 µΩ·m | Sufficient for structural parts; not suitable for electrical conduction. |
| Fajlagos hőkapacitás | ~ 460 J/kg · K | Provides thermal buffering in temperature-sensitive equipment. |
6. Microstructure and Metallurgical Characteristics
65-45-12 ductile iron’s performance hinges on its microstructure:
- Matrix: 90+% ferrit (puha, képlékeny) -vel <10% pearlite (kemény, lamellar), ensuring high elongation.
- Graphite Nodules: Spherical particles (10–30 μm diameter) -vel >80% nodularity (per ASTM A536).
Nodule count ranges from 100–200 nodules/mm²—higher counts improve toughness. - Nodularity: Critical for ductility: 80–90% nodularity ensures 12+% meghosszabbítás; <70% nodularity reduces elongation to <8%.
Hőkezelési lehetőségek
- Lágyítás: 800–850°C for 2 órák, slow-cooled to 600°C, then air-cooled. Reduces pearlite to <5%, increasing elongation to 16–18% but lowering tensile strength by 5–10%.
- Normalizálás: 900–950°C for 1 óra, air-cooled. Increases pearlite to 15–20%, boosting tensile strength to 75 ksi but reducing elongation to 10–12%.
7. Casting Characteristics of 65-45-12 Csillapító vas
65-45-12 ductile iron is highly regarded in the foundry industry for its excellent casting behavior, offering a reliable balance between folyékonyság, méretstabilitás, and low defect rates.
Its graphite nodule structure enhances casting performance while maintaining mechanical integrity.

Key Casting Characteristics
| Jellegzetes | Leírás |
| Önthetőség | Kiváló; the alloy flows well into complex molds, supporting intricate geometries and thin-wall sections. |
| Zsugorodási sebesség | Alacsony; minimizes internal stresses and dimensional variation during solidification. |
| Folyékonyság | Jó; accommodates various mold types such as sand, héj, and lost foam casting with consistent results. |
| Forró szakadásállóság | Magas; the ferritic matrix and rounded graphite nodules reduce internal strain and hot cracking tendencies. |
| Porozitási tendencia | Low when process-controlled; magnesium treatment and degassing help eliminate gas-related defects. |
| Chill Sensitivity | Mérsékelt; excessive cooling can lead to carbide formation or pearlitic structures—controlled cooling is necessary to maintain ductility. |
| Wall Thickness Impact | Mechanical properties can vary with wall thickness; thicker sections cool slower, favoring ferritic structures, while thinner areas may harden. |
| Dimenziós stabilitás | Jó. Maintains accuracy in larger parts due to uniform solidification and low residual stress. |
| Öntési módszerek | Compatible with homoköntés, shell molding, elveszett viaszöntés, lost foam casting, and permanent mold casting. |
8. Machinability and Fabrication
65-45-12 ductile iron’s machinability balances efficiency and tool life:
- Machinability Rating: 70–80% (VS. 100% for free-cutting brass), superior to cast steel (50–60%).
- Szerszámválasztás: Carbide inserts (TiAlN-coated) last 20–30% longer than on steel, with cutting speeds of 150–200 m/min for turning.
- Typical Operations:
-
- Turning/milling: Achieves Ra 1.6–3.2 μm finishes, suitable for hydraulic components.
- Drilling/tapping: Forms clean threads without chip welding, critical for pipe fittings.
- Hegesztés: Limited but possible with preheat (200–300°C) and low-hydrogen electrodes.
Welded joints retain ~70% of base metal strength but are rarely used—mechanical fastening is preferred.
9. Corrosion Resistance and Surface Treatment of 65-45-12 Csillapító vas
Bár 65-45-12 ductile iron offers excellent mechanical and casting properties, it is not inherently corrosion-resistant.
Unlike stainless steel or specially alloyed irons, its surface is prone to oxidation and environmental degradation—especially in moist, savas, or salt-laden environments.
Ennek eredményeként, appropriate surface treatments and coatings are essential to extend service life and ensure performance in demanding applications.

Corrosion Resistance Characteristics
| Vonatkozás | Performance of 65-45-12 |
| In Atmospheric Conditions | Moderate resistance; develops a stable oxide layer in dry environments |
| In Water or Soil | Korlátozott; prone to rust without protection, especially in acidic or oxygen-depleted conditions |
| In Marine/Chloride Environments | Poor resistance without coating; rapid pitting and general corrosion expected |
| Galvanic Corrosion Risk | High when in contact with dissimilar metals in conductive environments |
Common Surface Treatments
| Treatment Type | Cél | Tipikus alkalmazások |
| Festés / Por bevonat | Barrier protection against moisture and chemicals | Machinery housings, construction parts |
| Epoxy Coating | Excellent chemical and moisture resistance | Szelepek, csővezeték, waterworks |
| Galvanization (Hot-Dip Zinc) | Sacrificial layer for corrosion resistance, especially in outdoor or marine environments | Municipal infrastructure, hardware components |
| Phosphate Coating | Improves paint adhesion, provides light corrosion resistance | Automotive and hydraulic components |
| Passziválás (less common) | Removes surface contaminants, though limited effectiveness on ductile iron | Occasionally used prior to coating |
| Induction/Nitriding (Felszíni edzés) | Increases wear and surface hardness; secondary corrosion benefit | Fogaskerék, perselyek, wear plates |
10. Alkalmazás 65-45-12 Csillapító vas
Due to its excellent combination of strength, hajlékonyság, szívósság, önthetőség, és költséghatékonyság, 65-45-12 csillapító vas (as defined by ASTM A536) is widely used across multiple industrial sectors.

Key Industrial Applications by Sector
| Industry Sector | Tipikus alkalmazások |
| Autóipar | Suspension components, control arms, steering knuckles, hubs, differential housings |
| Municipal & Waterworks | Pipe fittings, szelepek, hydrant bodies, szivattyú burkolatok, búcsúfedők |
| Mezőgazdaság & Farming | Sebességváltó házak, implement brackets, wheel hubs, tillage tool frames |
| Ipari felszerelés | Compressor bodies, hidraulikus alkatrészek, motor housings, bearing supports |
| Construction Machinery | Counterweights, keretek, brackets, base plates, loader arms |
| Energia & Hatalom | Wind turbine brackets, transformer housings, gas compressor parts |
| Rail & Transit | Brake components, tengelykapcsoló, suspension parts |
| General Machinery | Clamps, levers, gear blanks, mounts, connecting arms |
11. Előnyei 65-45-12 Csillapító vas

- Magas szakítószilárdság: Provides structural integrity comparable to many steels (65 ksi / 448 MPA).
- Good Ductility: Minimum elongation of 12% ensures better toughness and resistance to cracking than gray iron.
- Excellent Fatigue Resistance: Suitable for cyclic and impact loading applications.
- Költséghatékony: Lower production and raw material costs compared to steel, while offering similar mechanical performance.
- Superior Castability: Allows complex shapes and near-net-shape components with low shrinkage and defects.
- Megmunkálhatóság: Easier to machine than many steels, reducing tooling wear and manufacturing time.
- Kopásállóság: Suitable for parts requiring moderate abrasion resistance without heavy surface treatments.
- Vibration Damping: Graphite nodules help absorb vibration, improving component lifespan and noise reduction.
- Sokoldalúság: Compatible with multiple casting methods and heat treatments to tailor properties.
- Környezetbarát: Recyclable and often produced with less energy compared to steel.
12. Limitations of 65-45-12 Csillapító vas
- Corrosion Vulnerability: Requires coating for outdoor/marine use—adds 10–15% to component cost.
- Strength Cap: Lower tensile strength than pearlitic ductile irons (PÉLDÁUL., 80-55-06 at 80 ksi) or high-strength steel.
- Geometry Sensitivity: Thick sections (>50 mm) may have lower nodule count, reducing ductility to <10%.
- Weld Constraints: Preheat/post-heat requirements make welding costly—mechanical fastening preferred.
13. Comparison with Other Ductile Iron Grades
| Ingatlan / Fokozat | 65-45-12 | 80-55-06 | 60-40-18 | 65-40-12 | 70-50-05 |
| Szakítószilárdság (ksi / MPA) | 65 / 448 | 80 / 552 | 60 / 414 | 65 / 448 | 70 / 483 |
| Meghosszabbítás (%) | ≥ 12 | ≥ 6 | ≥ 18 | ≥ 12 | ≥ 5 |
| Keménység (HB) | 170–210 | 230–280 | 160–200 | 170–210 | 210–250 |
| Tipikus alkalmazások | Autóalkatrészek, szivattyúház, szelepek | Heavy-duty components, high-stress parts | Applications needing higher ductility | General engineering, szerkezeti részek | Wear-resistant and impact parts |
| Legfontosabb különbségek | Balanced strength and ductility, sokoldalú | Higher strength, lower ductility, harder | Greater elongation, lower strength | Similar strength, slightly lower yield | Higher hardness, reduced elongation |
14. Szabványok és specifikációk
- ASTM A536: Specifies mechanical and microstructural limits for grade 65-45-12.
- Izo 1083 – 400‑12: Global equivalent.
- SAE J434C D50006: Common automotive spec.
- Foundries usually define nodularity, keménység, és chemical composition criteria.
15. Következtetés
65-45-12 ductile iron stands as a versatile engineering material, offering a rare blend of ductility, erő, és az önthetőség.
Its ferritic-spheroidal microstructure enables applications from automotive suspension parts to municipal valves, where deformation before failure and cost-effectiveness are critical.
While limited by corrosion vulnerability, its advantages—including superior fatigue resistance and low production costs—ensure its continued role as a staple in industrial design.
GYIK
Is 65-45-12 ductile iron weldable?
Igen, but not commonly welded. It requires preheating to 200–300°C and post-weld annealing to avoid cracking, making mechanical fastening more economical.
Hogyan 65-45-12 compare to steel?
65-45-12 matches low-carbon steel’s tensile strength at 30% lower cost but has lower corrosion resistance and elongation. Steel is preferred for high-heat or highly corrosive applications.
Tud 65-45-12 be used for pressure applications?
Igen, -ig 1000 PSI (69 bár) in fluid handling (PÉLDÁUL., water pipes) when properly designed with pressure ratings per ASME B16.42.
Is heat treatment required for 65-45-12?
No—its as-cast properties meet ASTM A536 requirements. Annealing can improve ductility, while normalizing boosts strength, but both add cost.



