1.4841 Roestvrijstalen investeringspomppomplichaam

1.4841 Roestvrij staal - een multidisciplinaire analyse

Inhoud show

1. Invoering

1.4841 roestvrij staal (X15CRNISI25-21) vertegenwoordigt een doorbraak in krachtige austenitische roestvrijstalen staal.

Onderscheiden door het fijn afgestemde legeringssysteem - dat chroom opneemt, nikkel, en met name verhoogde niveaus van silicium.

Deze graad levert uitzonderlijke oxidatieweerstand, Robuuste corrosieprestaties, en uitstekende thermische stabiliteit.

Deze eigenschappen schakelen het in 1.4841 uitblinken in omgevingen die worden gekenmerkt door agressieve media zoals chloriden, zuren, en hoge temperaturen.

Industrieën inclusief chemische verwerking, maritieme techniek, energieopwekking,

en zelfs hoogwaardige ruimtevaart is omarmd 1.4841 Voor kritieke componenten die zowel mechanische sterkte als duurzaamheid vereisen onder extreme omstandigheden.

Dit artikel biedt een uitgebreide analyse van 1.4841 roestvrij staal door de historische evolutie te onderzoeken, Chemische samenstelling en microstructuur, fysieke en mechanische eigenschappen,

verwerkingstechnieken, industriële toepassingen, Voordelen en beperkingen, en toekomstige trends.

2. Historische evolutie en normen

Historische achtergrond

De ontwikkeling van geavanceerde austenitische roestvrij staalse evolueerde naarmate industrieën materialen eisten met verbeterde weerstand tegen corrosie en oxidatie, Vooral onder omstandigheden op hoge temperatuur.

In de jaren zeventig en tachtig, Ingenieurs verbeterden bij conventionele cijfers zoals 316L en 316Ti door aanvullende elementen zoals silicium op te nemen.

This innovation addressed limitations in high-temperature oxidation and improved castability, resulting in the creation of 1.4841 roestvrij staal.

Its tailored composition fulfills the need for enhanced performance in chemically aggressive and thermally dynamic environments.

1.4841 Stainless Steel Pipes
1.4841 Stainless Steel Pipes

Merkvergelijking en internationale benchmarks

DIN standard: 1.4841

EN standard: X15CRNISI25-21 (IN 10095-1999) 58

International benchmark:

VS: ASTM S31000/UNS S31000

China: 20CR25NI20 (GB/T standard)

Japan: SUH310 (JIS standard)

Normen en certificeringen

1.4841 stainless steel complies with stringent international standards that guarantee its performance in critical applications. Key standards include:

  • VAN 1.4841 / EN X15CrNiSi25-21: These specifications govern the alloy’s chemical composition and mechanical properties.
  • ASTM A240 / A479: These standards define the requirements for plates, vellen, and castings for high-performance austenitics.
  • NACE Certifications: Relevant for sour service applications, ensuring the alloy meets rigorous criteria for use in chloride and acid environments.

3. Chemische samenstelling en microstructuur

Chemische samenstelling

1.4841 roestvrij staal (X15CRNISI25-21) derives its exceptional performance from its meticulously engineered chemical composition.

This alloy’s formulation is designed to provide a robust passive film, high-temperature oxidation resistance, en sterke mechanische eigenschappen.

Each element has been carefully selected and balanced to meet the rigorous demands of high-performance applications in corrosive and thermally challenging environments.

  • Chroom (Cr): Present in the range of 15–18%, chromium is critical for forming a stable Cr₂O₃ oxide film on the surface.
    This protective layer imparts outstanding corrosion and oxidation resistance, even under aggressive conditions.
  • Nikkel (In): Constituting approximately 10–13% of the alloy, nickel stabilizes the austenitic phase, Zorgen voor uitstekende taaiheid en ductiliteit.
    De aanwezigheid ervan is essentieel voor het handhaven van de kracht van de legering bij zowel omgevings- als verhoogde temperaturen.
  • Silicium (En): Meestal ongeveer 2-3%, Silicium speelt een cruciale rol bij het verbeteren van oxidatieweerstand op hoge temperatuur.
    Het verbetert de gietbaarheid en draagt ​​bij aan de verfijning van de korrelstructuur, die op zijn beurt de mechanische eigenschappen van de legering en de algehele duurzaamheid verhoogt.
  • Koolstof (C): Gehandhaafd op ultra-lage niveaus (≤ 0.03%), Laag koolstofgehalte minimaliseert de vorming van chroomcarbiden.
    Deze controle is cruciaal om sensibilisatie te voorkomen tijdens het lassen en de daaropvolgende intergranulaire corrosie, waardoor de corrosieweerstand op lange termijn wordt gewaarborgd.
  • Mangaan (Mn) & Silicium (En): Naast de primaire rol, silicium, Samen met mangaan (meestal hieronder gehouden 2.0%), AIDS als deoxidizer tijdens het smelten en verfijnen.
    These elements contribute to a more uniform microstructure and improved overall processability.
  • Stikstof (N): Although present only in trace amounts or up to 0.10–0.15%, nitrogen can enhance the strength of the austenitic matrix and further improve pitting resistance in chloride environments.

Overzichtstabel

Element Geschat bereik (%) Functionele rol
Chroom (Cr) 15–18 Forms a robust Cr₂O₃ passive film; essential for corrosion and oxidation resistance.
Nikkel (In) 10–13 Stabiliseert de austenitische structuur; enhances toughness and ductility.
Silicium (En) 2–3 Improves high-temperature oxidation resistance and castability; supports grain refinement.
Koolstof (C) ≤ 0.03 Maintained at ultra-low levels to prevent carbide precipitation and sensitization.
Mangaan (Mn) ≤ 2.0 Serves as a deoxidizer and promotes a uniform microstructure.
Stikstof (N) Trace – 0.10–0.15 Enhances strength and pitting resistance in chloride environments.

Microstructurele kenmerken

1.4841 stainless steel predominantly exhibits a face-centered cubic (FCC) austenitic matrix.

This structure ensures high ductility and toughness, which are critical for applications involving complex forming and high-impact loads. The alloy’s performance further benefits from:

  • Influence of Silicon: Silicon not only enhances high-temperature oxidation resistance but also supports a refined grain structure, resulting in improved mechanical properties.
  • Warmtebehandelingseffecten:
    Solution annealing between 1050°C and 1120°C, gevolgd door snelle koeling (water blussen), refines the grain structure—typically achieving ASTM grain size 4–5—and effectively suppresses deleterious phases such as sigma (A).
  • Benchmarking:
    Compared to traditional grades like 316L and 316Ti, 1.4841’s optimized microstructure results in better oxidation resistance at high temperatures and improved overall stability in corrosive environments.

4. Fysieke en mechanische eigenschappen van 1.4841 Roestvrij staal (X15CRNISI25-21)

1.4841 stainless steel stands out for its balanced combination of high mechanical strength, uitstekende ductiliteit, and robust corrosion resistance, making it an optimal choice for high-performance applications.

Its physical properties and mechanical behavior play a critical role in ensuring reliable operation under aggressive environments, ranging from elevated temperatures and cyclic loads to corrosive chemical exposures.

Mechanische prestaties

1.4841 stainless steel is engineered to deliver superior strength and toughness while retaining high ductility.

These qualities are essential for applications that involve mechanical stress and dynamic loading.

Treksterkte:

The alloy typically exhibits tensile strengths between 500 En 700 MPa.

This high load-bearing capacity enables the material to perform reliably in structural and pressure-bearing applications, such as reactor internals and heat exchangers.

Stainless Steel Five Way Manifold Valves X15CrNiSi25-21
Stainless Steel Five Way Manifold Valves X15CrNiSi25-21

Opbrengststerkte:

With a yield strength commonly ≥220 MPa, 1.4841 ensures minimal permanent deformation under stress.

This reliable yield behavior makes it suitable for components exposed to cyclic loading or mechanical shock.

Verlenging:

The alloy offers an elongation exceeding 40%, indicating excellent ductility.

This high degree of plasticity facilitates complex forming operations, such as deep drawing and bending, while also enhancing impact resistance.

Hardheid:

Brinell hardness values typically range between 160 En 190 HB, which provide a good balance between wear resistance and machinability.

This hardness level ensures durability in applications where surface wear is a concern.

Impactsterkte:

Charpy V-notch testing shows impact energies in excess of 100 J bij kamertemperatuur, demonstrating robust performance under dynamic or shock-loading conditions.

Fysieke eigenschappen

The physical properties of 1.4841 zijn van cruciaal belang bij het handhaven van dimensionale stabiliteit en thermisch beheer in verschillende servicecondities:

Dikte:

Ongeveer 8.0 g/cm³, Vergelijkbaar met andere austenitische roestvrijstalen stalen met hoge legering.

Deze dichtheid draagt ​​bij aan een gunstige sterkte-gewichtsverhouding, belangrijk in toepassingen waarbij gewicht een kritieke factor is.

Thermische geleidbaarheid:

Rond 15 W/m·K (gemeten bij kamertemperatuur), 1.4841 Efficiënt verdrijven warmte.

Deze thermische geleidbaarheid is met name waardevol bij toepassingen zoals warmtewisselaars, Waar snelle warmteoverdracht essentieel is voor de prestaties.

Coëfficiënt van thermische uitzetting:

De legering vertoont een thermische expansiecoëfficiënt van ongeveer 16–17 × 10⁻⁶/K, ervoor zorgen dat componenten dimensionale stabiliteit behouden tijdens thermische cycli.

Deze consistentie is essentieel voor precisie-ontworpen delen die worden onderworpen aan periodieke temperatuurschommelingen.

Elektrische weerstand:

Met een elektrische weerstand van ongeveer 0.85 µω · m, 1.4841 Biedt matige isolatie -eigenschappen, which can be important in environments where electrical conductivity needs to be controlled.

Corrosie- en oxidatieweerstand

1.4841 is designed to perform exceptionally well in corrosive environments, thanks to its optimized alloying:

  • Weerstand tegen putcorrosie en spleetcorrosie:
    The Pitting Resistance Equivalent Number (Hout) voor 1.4841 usually ranges from 28 naar 32.
    This high PREN value enables the alloy to resist localized corrosion phenomena, such as pitting, even in chloride-rich or acidic environments.
  • Intergranular Corrosion and Oxidation:
    The ultra-low carbon content, coupled with enhanced silicon and nitrogen levels, helps maintain the alloy’s passive Cr₂O₃ layer.
    Als resultaat, 1.4841 exhibits excellent intergranular corrosion resistance and can maintain its properties at temperatures up to ~ 450 ° C, making it highly suitable for high-temperature applications.

Overzichtstabel: Belangrijkste eigenschappen

Eigendom Typische waarde Betekenis
Treksterkte (RM) 500–700 MPa High load-bearing capability
Opbrengststerkte (Rp 0.2%) ≥220 MPa Resistance to permanent deformation
Verlenging ≥40% Excellent ductility for forming and shock absorption
Brinell-hardheid 160–190 HB Optimal balance between wear resistance and machinability
Impactsterkte (Charpy V-Notch) >100 J Superior energy absorption under dynamic loading
Dikte ~ 8,0 g/cm³ Favorable strength-to-weight ratio
Thermische geleidbaarheid ~ 15 w/m · k Efficiënte warmteafwijking, crucial for thermal management
Coëfficiënt van thermische uitzetting 16–17 × 10⁻⁶/K Dimensional stability during thermal cycling
Elektrische weerstand ~ 0,85 µω · m Ondersteunt gematigde isolatie -eisen
Hout (Putweerstand) ~ 28–32 Excellent resistance to localized corrosion (put/spleet)

5. Verwerking en fabricagetechnieken van 1.4841 Roestvrij staal (X15CRNISI25-21)

1.4841 stainless steel stands out not only for its exceptional physical and mechanical properties but also for its adaptability to various processing and fabrication methods.

The following section describes the key processing routes and best practices for casting, vormen, bewerking, lassen, and surface finishing of 1.4841 roestvrij staal.

Processen vormen en casten

Giettechnieken:

1.4841 stainless steel can be cast using conventional methods such as investeringsgieten En zand gieten.

Maintaining mold temperatures between 1000–1100°C and employing controlled cooling rates are critical.

These practices minimize segregation and prevent the formation of deleterious phases such as sigma (A) tijdens stolling.

1.4841 stainless steel valves
1.4841 stainless steel valves

Following casting, a solution annealing treatment (typically at 1050–1120°C) with rapid quenching (water or air quenching) homogenizes the microstructure and dissolves any undesired carbides, thereby restoring full corrosion resistance.

Heet vormen:

Hot forming methods—such as forging, rollend, and pressing—are typically performed within the temperature range of 950–1150°C.

Operating in this range softens the material, allowing for significant deformation while preserving its austenitic structure.

Rapid quenching immediately after hot forming helps “lock in” the refined grain structure and prevent precipitation of unwanted intermetallic phases.

Koud vervormen:

Hoewel 1.4841 stainless steel can undergo cold working, its high work-hardening rate demands careful attention.

Intermediate annealing cycles are usually necessary to restore ductility and relieve residual stresses.

These cycles help to prevent cracking and maintain dimensional stability during processes like deep drawing, buigen, of stempelen.

Kwaliteitscontrole bij het vormen:

Manufacturers use simulation tools, such as finite element analysis (FEA), to predict stress distribution and deformation behavior during forming operations.

Aanvullend, non-destructive evaluation (NDE) methods—such as ultrasonic testing and dye penetrant inspection—ensure that castings and formed products meet stringent quality standards.

Bewerken en lassen

Bewerking:

CNC-bewerking 1.4841 stainless steel presents challenges due to its high ductility and tendency to work harden. To achieve precision and extend tool life:

1.4841 roestvrijstalen flenzen
1.4841 roestvrijstalen flenzen
  • Gereedschapsmateriaal: Use high-performance carbide or ceramic cutting tools with optimized geometries.
  • Snijparameters: Employ lower cutting speeds and higher feed rates to reduce heat buildup and minimize work hardening.
  • Koelsystemen: Utilize high-pressure water-based coolant or emulsions to dissipate heat effectively, which helps maintain tight dimensional tolerances and superior surface finishes.

Lassen:

1.4841 stainless steel exhibits excellent weldability due to its titanium stabilization, which prevents the deleterious precipitation of chromium carbides in the heat-affected zone (HAZ).

Key welding considerations include:

  • Lasmethoden: TIG (GTAW) en IK (GMAW) are generally preferred for achieving high-quality, defect-free welds.
  • Vulmaterialen: Use matching filler metals, such as ER321, to maintain the alloy’s stabilization and corrosion resistance.
  • Warmte -invoerregeling: Keep the heat input below 1.5 kJ/mm and maintain interpass temperatures under 150°C to prevent carbide precipitation.
  • Na de lagbehandelingen: In sommige gevallen, Postlassing oplossing gloeien in combinatie met elektropolishing kan worden gebruikt om de volledige corrosieweerstand van de legering te herstellen, vooral voor kritieke toepassingen.

Oppervlakteafwerking:

Het bereiken van een hoogwaardige oppervlakte-afwerking is van cruciaal belang voor de prestaties van 1.4841 in agressieve omgevingen. Standaard oppervlakteafwerking Technieken omvatten:

  • Beitsen en Passiveren: Deze chemische behandelingen verwijderen oppervlakteoxiden en verontreinigingen, waardoor de beschermende chroomrijke passieve laag herstelt.
  • Elektrolytisch polijsten: Dit proces maakt het oppervlak glad (het bereiken van RA <0.8 µm) en verbetert de corrosieweerstand van de legering door micro-crevices te verminderen waar corrosie kan initiëren.
  • Mechanische afwerking: In toepassingen die spiegelachtige afwerkingen vereisen, Extra polijsten kunnen worden uitgevoerd, vooral voor componenten die worden gebruikt in hygiënische of hoge zuiverheidssectoren.

Geavanceerde en hybride productiebenaderingen

Integratie van digitale productie:

Moderne productieomgevingen maken gebruik van IoT -sensoren en digitale tweelingsimulaties (met behulp van platforms zoals Procast) to monitor process variables in real time.

This integration optimizes parameters like cooling rates and heat input, increasing yield by up to 20–30% and reducing the incidence of defects.

Hybride productietechnieken:

Combining additive manufacturing (bijv., selective laser melting or SLM) with traditional processes such as hot isostatic pressing (HEUP) and subsequent solution annealing represents a cutting-edge approach.

This technique minimizes residual stresses (reducing them from approximately 450 MPa to as low as 80 MPa) and enables the fabrication of complex components with superior mechanical properties and integrity.

Samenvatting Tabel - Verwerkingsaanbevelingen voor 1.4841 Roestvrij staal

Process Stage Recommended Parameters/Techniques Belangrijke overwegingen
Gieten Mold temps: 1000–1100 ° C; gecontroleerde koeling Minimize segregation, avoid sigma phase
Heet vormen Temperatuurbereik: 950–1150 ° C; rapid quenching post-deformation Preserve austenitic structure, refine grain size
Koud vervormen Requires intermediate annealing Prevent excessive work-hardening
Bewerking Low cutting speed, high feed; carbide/ceramic tooling; hogedruk koelvloeistof Minimize tool wear, maintain surface integrity
Lassen TIG/MIG welding; filler: ER321; Warmte -invoer <1.5 KJ/mm, interpass <150°C Prevent carbide precipitation, ensure weld quality
Oppervlakteafwerking Elektrolytisch polijsten, beitsen, passivatie Achieve low Ra (<0.8 µm) and restore passive film
Advanced Manufacturing Digital monitoring, hybrid additive + HEUP + gloeien Improve yield, reduce residual stresses

6. Industriële toepassingen van 1.4841 Roestvrij staal (X15CRNISI25-21)

1.4841 stainless steel is a high-performance material specifically engineered for environments that demand superior oxidation, corrosie, en thermische stabiliteit.

Its exceptional properties make it a prime candidate for a broad spectrum of critical applications. Onderstaand, we explore several key industrial sectors where 1.4841 stainless steel excels.

Chemische en petrochemische verwerking

  • Reactor Linings and Vessels: The alloy’s excellent resistance to pitting and intergranular corrosion makes it ideal for lining reactors that handle aggressive media such as hydrochloric, zwavelzuur, en fosforzuren.
  • Warmtewisselaars: High thermal conductivity and stable mechanical properties allow efficient and durable performance in systems that transfer heat between aggressive chemical streams.
  • Leidingsystemen: Its resistance to both oxidizing and reducing environments makes 1.4841 suitable for piping systems involved in processing and transporting corrosive chemicals.

Mariene en offshore engineering

  • Seawater Exposure: Its enhanced oxidation resistance and stable austenitic structure help combat the corrosive effects of saltwater, making it suitable for pump housings, kleppen, and underwater fasteners.
  • Structurele componenten: For offshore platforms and coastal structures, its excellent resistance to pitting and crevice corrosion under cyclic loads ensures longevity.
  • Ballast and Seawater Intake Systems: The alloy’s ability to maintain clean, passive surfaces minimizes biofouling and corrosion, ensuring operational reliability in maritime applications.

Energieopwekking

  • Heat Recovery Systems: Components such as heat exchanger tubes, economizers, and condensers benefit from their ability to sustain high thermal loads while maintaining corrosion resistance.
  • Boiler Components: The alloy provides durable performance for parts exposed to high-pressure steam and aggressive combustion environments.
  • Uitlaatsystemen: Its oxidation resistance up to around 450°C ensures that exhaust systems and related components perform reliably over extended service periods.

Ruimtevaarttoepassingen

  • Vliegtuigcomponenten: Selected for non-structural components such as ducts, warmtewisselaars, and exhaust systems where high-temperature stability and corrosion resistance are essential.

Hoge zuiverheids- en hygiënische toepassingen

  • Farmaceutische apparatuur: Its corrosion resistance and ease of surface finishing help in
    manufacturing components for clean rooms, opslagtanks, and piping systems that come into contact with active pharmaceutical ingredients.
  • Voedsel- en drankverwerking: The alloy’s ability to maintain a clean, passive surface ensures that equipment remains hygienic and free from contamination,
    making it suitable for direct food contact applications.

Ultra-smooth surfaces (Ra < 0.8 µm) reduce bacterial adhesion and support stringent hygiene standards, offering additional value in these critical sectors.

7. Voordelen van 1.4841 Roestvrij staal (X15CRNISI25-21)

1.4841 stainless steel distinguishes itself with a multitude of advantages, making it a high-performance material for demanding applications.

Verbeterde corrosiebestendigheid

  • Superior Oxidation Performance:
    The significant silicon content helps form a stable, beschermende oxidelaag, which enhances the alloy’s resistance to oxidation even at elevated temperatures.
    This characteristic is particularly beneficial in applications like heat exchangers and reactor internals.
  • Improved Pitting and Crevice Resistance:
    A high Chromium level combined with contributions from nickel and a modest addition of nitrogen achieves a Pitting Resistance Equivalent Number (Hout) in the range of 28–32.
    This ensures effective protection against localized corrosion in chloride and acidic media.

Robuuste mechanische eigenschappen

  • High Tensile and Yield Strength:
    With tensile strengths between 500 En 700 MPa and yield strengths of at least 220 MPa,
    the material reliably withstands high loads and cyclic stresses, making it suitable for structural components in both chemical processing and power generation systems.
  • Uitstekende ductiliteit:
    An elongation exceeding 40% underscores its superb formability.
    This high ductility allows for extensive deformation during forming processes while maintaining toughness, critical for components subject to impacts.
  • Balanced Hardness:
    Brinell hardness values ranging from 160 naar 190 HB ensure adequate wear resistance without compromising machinability.

Uitstekende lasbaarheid en fabricage veelzijdigheid

  • Reduced Sensitization Risk:
    The alloy resists carbide precipitation during welding, which minimizes intergranular corrosion in the heat-affected zone.
    This advantage streamlines fabrication and reduces the need for extensive post-weld heat treatments.
  • Processing Versatility:
    Whether through casting, hot forming, koud werken, or precision machining, 1.4841 adapts well to a variety of manufacturing methods.
    Its compatibility with advanced machining and welding techniques renders it ideal for producing complex components without compromising performance.

Stabiliteit bij hoge temperaturen

  • Stable in Elevated Temperatures:
    1.4841 can maintain its mechanical integrity and corrosion resistance at service temperatures up to approximately 450°C.
    This makes it particularly suitable for components in high-temperature systems, such as those used in power generation and high-temperature chemical reactors.
  • Predictable Thermal Expansion:
    With a controlled coefficient of thermal expansion (16–17 × 10⁻⁶/K), the alloy ensures dimensional stability during thermal cycling, which is vital for high-precision applications.
1.4841 stainless steel Flexible Duct
1.4841 stainless steel Flexible Duct

Lifecycle kostenefficiëntie

  • Uitgebreide levensduur:
    Enhanced corrosion and oxidation resistance reduce downtime and repair frequency, especially in harsh chemical and marine environments.
  • Minder onderhoud:
    The reliability and durability of 1.4841 translate into lower lifecycle costs, making it a cost-effective solution in critical, long-term applications despite its premium price tag.

8. Uitdagingen en beperkingen

Terwijl 1.4841 stainless steel offers remarkable performance, several challenges require careful management:

  • Spanningscorrosiescheuren (SCC):
    The alloy may still suffer from SCC in environments with high chloride levels above 60°C or under H₂S exposure, necessitating protective coatings or design modifications.
  • Lasgevoeligheden:
    Overmatige warmte -input (boven 1.5 KJ/mm) during welding can lead to carbide precipitation and reduced ductility, which may require controlled welding procedures and post-weld heat treatment.
  • Bewerkingsproblemen:
    High work hardening increases tool wear, potentially up to 50% more than standard grades such as 304. Special tooling and optimized machining conditions are required to maintain precision.
  • Beperkingen bij hoge temperaturen:
    Langdurige blootstelling (over 100 uur) at 550–850°C can trigger sigma phase formation, het verminderen van de impact taaiheid tot maximaal 40% and limiting continuous service temperatures to around 450°C.
  • Kosten implicaties:
    The use of premium alloying elements such as nickel, molybdeen, silicium, and nitrogen drives the material cost roughly 35% higher than that of more conventional austenitic stainless steels.
  • Ongelijksoortige metaalaanvaarding:
    Deelnemen 1.4841 with carbon steels can promote galvanic corrosion, potentially tripling localized corrosion rates and reducing low-cycle fatigue life by 30–45%.
  • Uitdagingen van de oppervlaktebehandeling:
    Standaard passiveringsprocessen verwijderen mogelijk niet volledig sub-micron ijzeren deeltjes, Vaak noodzakelijk om extra elektropolishing te vereisen voor hoge zuiverheidsvereisten.

9. Vergelijkende analyse met andere cijfers

De onderstaande tabel consolideert de belangrijkste eigenschappen voor 1.4841 roestvrij staal (X15CRNISI25-21) vergeleken met vier andere veelgebruikte cijfers:

316L (austenitisch), 1.4571 (Titanium-gestabiliseerde 316ti), 1.4581 (Nog een titanium-gestabiliseerde variant met hogere legering), En 2507 (super duplex).

Eigenschap/graad 1.4841 (X15CRNISI25-21) 316L (Austenitisch) 1.4571 (316Van) 1.4581 (De gestabiliseerde) 2507 (Super duplex)
Type Austenitisch (Hoge legering) Austenitisch (Laag koolstofgehalte) Austenitisch (Titanium gestabiliseerd) Austenitisch (Hoge legering) Super duplex
Chroom (Cr, %) 15–18 16.5–18.5 16.5–18.5 24–26 25–28
Nikkel (In, %) 10–13 10–13 10.5–13.5 13–15 6–8
Silicium (En, %) 2–3 ≤1.0 - - -
Molybdeen (ma, %) Spoor (~ 0,5) 2–2.5 2–2.5 3–4 3–5
Koolstof (maximaal, %) ≤0,03 ≤0,03 ≤0,08 ≤0,03 ≤0,03
Stikstof (N, %) Trace - 0.10–0.15 Spoor ≤0.11 0.10–0.20 0.20–0.30
Hout (Putweerstand)
~ 28–32 ~ 25–28 ~ 24–26 ~ 28–32 ~ 42–45
Opbrengststerkte (MPa) ≥220 ~220 ≥220 ≥250 ≥550
Treksterkte (MPa) 500–700 485–680 490–690 600–750 ≥800
Verlenging (%) ≥40 ≥40 ≥40 ≥40 25–30
Lasbaarheid Uitstekend Uitstekend Uitstekend Goed Gematigd
Kosten (Familielid) Matig - Hoog Laag Matig - Hoog Hoog Zeer hoog

10. Conclusie

1.4841 roestvrij staal (X15CRNISI25-21) vertegenwoordigt een belangrijke vooruitgang in hoogwaardige austenitische legeringen.

Zijn mechanische eigenschappen - gereflecteerd in hoge trek- en opbrengststerkten, uitzonderlijke ductiliteit, en voldoende impact taaiheid -

maak het ideaal voor het eisen van toepassingen in de chemische verwerking, maritieme techniek, energieopwekking, en zelfs ruimtevaart.

Opkomende trends in digitale productie, Duurzame productie, en geavanceerde oppervlakte -engineering belooft verder te vergroten zijn prestaties en applicatiebereik in de nabije toekomst.

 

DEZE is de perfecte keuze voor uw productiebehoeften als u roestvrijstalen producten van hoge kwaliteit nodig hebt.

Neem vandaag nog contact met ons op!

Scroll naar boven