Materiały do ​​​​odlewania inwestycyjnego

Investment Casting Materials — Choose the Right Alloy Early

1. Podsumowanie wykonawcze

Casting inwestycyjny (lost-wax casting) is prized for shape accuracy, thin sections and complex geometry.

The choice of alloy is the single most important design decision because it determines: which materials and melting/degassing practices the foundry must use; the shell chemistry and firing cycles;

feeding and shrinkage strategy; achievable mechanical properties and required post-casting heat treatments; inspection and acceptance tests; and ultimately part cost and lead time.

This article examines the principal families of alloys commonly cast by the investment process, compares their metallurgical behaviors and processing implications, and provides pragmatic selection guidance tied to typical applications.

2. Why material selection matters in investment casting

Material selection is the single most consequential engineering decision in casting inwestycyjny. It determines not only the in-service performance of the finished part (wytrzymałość, odporność na korozję, stabilność w wysokiej temperaturze, biokompatybilność, waga),

but also the entire upstream and downstream manufacturing chain: melting and pouring method, shell chemistry and firing, gating/riser strategy, defect modes to watch for, required heat treatments, metody inspekcji, czas cyklu, scrap risk and total cost.

Materiały do ​​​​odlewania inwestycyjnego
Materiały do ​​​​odlewania inwestycyjnego

3. Material families used in investment casting

Rodzina Wspólne oceny / przykłady Typical density (g·cm⁻³) Topienie / płyn (°C) Wytrzymałość & niche
Austenityczne stale nierdzewne 304, 316L, CF3, CF3M 7.9 ~1,400–1,450 Odporność na korozję, ease of casting
Precipitation-hardening stainless 17-4 PH (AISI 630) 7.8 ~1,350–1,420 High strength after aging
Dupleks / Super-dupleks 2205, 2507 ~ 7.8 ~1,350–1,450 Wysoka wytrzymałość + Rezystancja wżery
Nierdzewny martenzytyczny / stale narzędziowe 410/420, H13, 440C 7.7–7.9 1,300–1,450 (różni się) Nosić, odporność na ciepło (obróbka)
Węgiel / Stale o niskiej płaszczyzny 1020–4140, WCB 7.8 ~1,420–1,540 Strukturalny, niższy koszt
Nickel-base superalloys
Inconel 718, 625, 738 8.2–8.4 1,350–1400 (718), liquidus up to ~1,400–1,450+ Wytrzymałość w wysokiej temperaturze, skradać się
Cobalt-base alloys Co-Cr-Mo (ASTM F75) ~8.3–8.9 ~1,260–1,350 Nosić, biomedical implants
Copper-base alloys (bronze/brass) Brąz aluminiowy, Z Sn, Z nami 8.4–8,9 900–1,080 Przewodność, powierzchnie łożyska
Stopy tytanu Ti-6Al-4V 4.4 melting ~1,650 High strength-to-weight, biokompatybilny
Stopy aluminium A356 (ograniczony) 2.7 ~580–660 Lekki, low strength vs others
Metale szlachetne 18K gold, srebro, Pt-alloys Au 19.3, Ag 10.5 Au melt 1,064 Biżuteria, styki elektryczne

4. Casting Alloy Materials — Determining the Final Performance of Castings

When selecting an alloy for a casting you must consider a set of interdependent factors: wymagane właściwości mechaniczne (wytrzymałość, wytrzymałość, zmęczenie), Środowisko operacyjne (temperatura, Media żrące),

geometria (thin walls vs massive sections), Produkcja (płynność, freezing range, reaktywność), post-cast processing (obróbka cieplna, BIODRO), inspection needs and cost.

Ferrous alloy castings

1) Carbon-steel odlewy

What they are: low-alloy steels where carbon is the primary strengthening element (np., AISI 1020–1045, ASTM A216 WCB, odpowiedniki).
Właściwości & wydajność: umiarkowana siła, good toughness when normalized, excellent machinability and low cost. Density ~7.85 g/cm³.
Casting considerations: modest melting point (~1,420–1,540 °C), good fluidity for many geometries but susceptible to shrinkage porosity in heavy sections.
Shell and gating design must provide adequate feeding. Hydrogen and graphite formation can be concerns for some grades.
Przetwarzanie końcowe: normalizacja, ugasić & hartować (w zależności od oceny) to achieve desired hardness/strength.
Aplikacje: elementy konstrukcyjne, obudowy, general engineering castings where corrosion resistance is not critical.

2) Alloy-steel odlewy

What they are: steels alloyed with Cr, Pon, W, V, itp., Aby poprawić siłę, hardenability and elevated-temperature properties (np., 4140, 4340 family analogs).
Właściwości & wydajność: Wyższa wytrzymałość na rozciąganie, fatigue resistance and toughness than plain carbon steels; can be heat-treated to high strengths.
Casting considerations: higher sensitivity to segregation and hot-cracking as alloy content rises; careful gating and risering needed; some alloys require vacuum or deoxidized melts for soundness.
Przetwarzanie końcowe: critical quench/temper cycles, control of distortion during heat treatment. May require stress relief and tempering to balance properties.
Aplikacje: koła zębate, wały, high-stressed structural parts, oil-field components.

3) Stal nierdzewna odlewy

What they are: iron-based alloys with ≥10.5% Cr; families include austenitic (304/316/CF8/CF8M), martenzytyczny (410/420), dupleks (2205) i utwardzanie wydzieleniowe (17-4 PH).

Właściwości & wydajność: corrosion resistance ranges from general (austenitics) to high chloride resistance (Dupleks/superduplex);
mechanical properties vary widely — duplex offers high strength + dobra odporność na korozję; 17-4 PH offers high strength after aging.

Investment Casting Stainless Steel Valves Parts
Investment Casting Stainless Steel Valves Parts

Casting considerations: stainless melts form oxide/slag; control of melt chemistry, deoxidation and inclusion removal matters for surface finish and mechanical properties.
Solidification shrinkage and hot tear susceptibility differ across grades.
Przetwarzanie końcowe: Rozwiązanie wyżarzanie, quench and aging (for PH grades); duplex may require careful heat treatment to keep phase balance. Passivation and pickling often follow machining.
Aplikacje: chemical plant components, zawory, sprzęt morski, sanitary parts, przetwórstwo spożywcze, urządzenia medyczne.

Non-ferrous alloy castings

4) Aluminum-alloy odlewy

What they are: Al-Si, Al-Cu and Al-Mg families (np., A356, A357, ADC12, 6061-typ) for cast components.
Właściwości & wydajność: niska gęstość (~ 2,7 g/cm³), good specific strength (after heat treat for some alloys), excellent corrosion resistance when alloyed properly; doskonała przewodność cieplna/elektryczna.
Casting considerations: very good fluidity enables thin walls and fine detail, but hydrogen porosity, oxide films and hot tearing in certain conformations are key risks.
Shell firing temperatures and dewax schedules differ from ferrous work. Hydrogen control, melt cleanliness and proper gating are essential.
Przetwarzanie końcowe: solution heat treatment and artificial aging (T6) dla siły; sometimes HIP for critical aerospace parts.
Aplikacje: obudowy lotnicze, automotive lightweight components, heat-dissipating parts.

5) Miedź-base alloys (brązowy, mosiądz, brąz aluminiowy)

What they are: Z Sn (brązowy), Cu-Zn (mosiądz), Z (brąz aluminiowy), Z nami, i warianty.
Właściwości & wydajność: doskonała odporność na korozję (especially Cu-Ni/Al-bronze), good bearing properties and thermal/electrical conductivity. Density ~8.4–8.9 g/cm³.

Brass Investment Casting Gas Ball Valve Connector Parts
Brass Investment Casting Gas Ball Valve

Casting considerations: lower melting points than steels; high thermal conductivity affects solidification behavior (fast cooling).
Good fluidity makes fine detail feasible. Shrinkage and hot cracking risk depend on alloy composition.
Przetwarzanie końcowe: annealing for ductility, machining is often difficult (hartowanie pracy); surface finishing and dezincification concerns for brasses exposed to certain environments.
Aplikacje: sprzęt morski, Komponenty pompy, namiar, decorative and electrical parts.

6) Tytan-alloy castings

What they are: principally Ti-6Al-4V and other Ti alloys offering high specific strength and biocompatibility.
Właściwości & wydajność: excellent strength-to-weight, corrosion resistance and biocompatibility; niska gęstość (~4.4 g/cm³).

Titanium Investment Casting impellers
Titanium Investment Casting impellers

Casting considerations: highly reactive melt (tlen, nitrogen pickup) — vacuum/argon melting and pour required to avoid embrittlement and inclusions.
Solidification shrinkage and oxide formation demand specialized shell materials and melting practices. Production costs and equipment requirements are high.
Przetwarzanie końcowe: vacuum heat treatment, odprężenie, HIP common to close porosity for critical components. Surface finishing is important for fatigue-sensitive parts.
Aplikacje: aerospace structural components, implanty medyczne, high-performance sporting goods.

High-temperature alloy castings

7) Nickel-base superalloys

What they are: Ni-Cr-Co-Al-Ti based alloys (Inconel, Rene, Nimonic families) designed for strength and creep resistance at elevated temperatures (up to ~1,000 °C and beyond for some alloys).
Właściwości & wydajność: excellent creep strength, oxidation and corrosion resistance at high temperature; density around 8.2–8.5 g/cm³.

Nickel Alloy Investment Casting Valve Bodies
Nickel Alloy Investment Casting Valve Bodies

Casting considerations: long solidification ranges promote segregation and shrinkage defects; topienie indukcyjne próżniowe, strict de-gassing and inclusion control are critical.
Directional solidification and single-crystal casting are specialized variants for turbine blades (different process chain).
Przetwarzanie końcowe: complex solution and aging heat treatments to develop γ′ precipitates; HIP and machining are common. Certification for aerospace sectors requires tight NDT.
Aplikacje: gas-turbine hot-section parts, lotniczy, wytwarzanie energii, high-temperature chemical processing.

8) Cobalt-base alloys

What they are: Co-Cr-Mo and related compositions used where wear and elevated-temperature strength are required (np., stellite family).
Właściwości & wydajność: good hot hardness, wear resistance and corrosion resistance. Often used where sliding wear at elevated temperature is present.
Casting considerations: high melting points and sensitivity to segregation; machining is challenging due to high hardness.
Przetwarzanie końcowe: solution/aging (where applicable), grinding and polishing for tribological surfaces.
Aplikacje: turbine seals, gniazda zaworowe, biomedical dental alloys (CO-CR), nosić komponenty.

9) Iron-based high-temperature alloys

What they are: heat-resisting irons (np., Fe-Cr-Al, stainless steels formulated for elevated temperature).
Właściwości & wydajność: cost-effective at moderate high temperatures, good oxidation resistance with suitable alloying.
Casting considerations & aplikacje: used where temperatures are high but extreme creep resistance of nickel alloys is not required (np., części pieca, some industrial burners).

Special-purpose alloy castings

Precious-metal alloys (złoto, srebrny, platyna)

What they are: Au, Ag and Pt alloys for jewelry, precision contacts and catalytic uses.
Właściwości & wydajność: excellent corrosion resistance and aesthetic properties; variable mechanical strength depending on karat and alloying.
Casting considerations: Niskie punkty topnienia (gold ~1,064 °C), Doskonała płynność; vacuum or controlled atmosphere casting improves surface finish.
Casting inwestycyjny (Lost-Wax) is the dominant manufacturing route for jewelry.
Aplikacje: biżuteria, electronics contacts, decorative and specialty chemical uses.

Magnetic alloys (Al-Ni-Co, Nd-Fe-B variants)

What they are: permanent-magnet materials and soft magnetic alloys; notatka: many high-energy magnets (Nd-Fe-B) are not commonly made by investment casting because powder and consolidation processes are typical. Al-Ni-Co can be cast.
Właściwości & wydajność: magnetic coercivity, flux density and temperature stability determine suitability.
Casting considerations: magnetic alloys require controlled solidification to avoid unwanted phases; post-magnetization processing required.
Aplikacje: czujniki, silniki, oprzyrządowanie.

Shape-memory alloys (Ni-Ti / Nitinol)

What they are: near-equiatomic nickel-titanium alloys with shape-memory and superelastic behavior.
Właściwości & wydajność: reversible martensitic transformations produce large recoverable strains; used in actuators and medical devices.
Casting considerations: Ni-Ti is reactive and sensitive to composition; vacuum melting and precision control of Ni/Ti ratio are critical;
often produced via investment casting for complex geometries but powder-metallurgy and C-shape components are common. Post-cast heat treatment tailors transformation temperatures.
Aplikacje: urządzenia medyczne (stenty, staples), actuators and adaptive structures.

5. Wnioski

Material choice is the single most influential decision in investment casting.

It governs not only the in-service performance of a part (wytrzymałość, zmęczenie, korozja, zdolność temperatury, biokompatybilność, masa)

but also every practical aspect of manufacture: melting method, shell chemistry and firing, gating and feeding strategy, likely defect modes, required heat treatment and NDT, cost and lead time.

Klawisz, actionable conclusions:

  • Start with function, not habit. Define the dominating service drivers (temperatura, korozja, nosić , Życie zmęczeniowe, waga, regulatory constraints)
    and let those map you to a material family (np., nickel alloys for high-temperature creep, titanium for strength-to-weight and biocompatibility, duplex stainless for chloride service, bronzes for marine wear, precious metals for jewelry/electrical contacts).
  • Match foundry capability to alloy demand. Many alloys (tytan, Superalloys, stopy kobaltu) require vacuum or inert melting, BIODRO, and advanced NDT.
    Don’t specify an special alloy unless a qualified supplier can deliver and certify it.
  • Design and process are co-dependent. Alloy attributes (Zakres topnienia, płynność, skurcz, reaktywność, segregation tendency, przewodność cieplna) must be used to set tooling compensation, gating/riser design, shell system and dewax/firing schedules.
    Early simulation and pilot castings materially reduce risk.
  • Plan post-casting steps up front. Obróbka cieplna, BIODRO, surface finishing and machining affect dimension control and cost.
    Dla kluczowych komponentów, specify these steps in the RFQ (and include acceptance tests and traceability).
  • Control quality by specification. Require MTRs, heat-treatment records, defined NDT regimes (radiography/CT for internal porosity, ultrasonic for thick ferrous sections, dye-penetrant for surfaces), and a clearly stated acceptance standard.
    Define limits for porosity, inclusions and mechanical properties.
  • Balance cost, schedule and risk. Special alloys and stringent acceptance protocols increase lead time and cost.
    Use the simplest alloy that satisfies functional requirements and qualify alternatives where feasible.

Często zadawane pytania

Can any metal be investment cast?

Many metals and alloys are suitable (stale, nierdzewny, nadstopy niklu i kobaltu, stopy miedzi, aluminium, tytan, Metale szlachetne).

Jednakże, suitability depends on foundry capability: reactive metals (tytan, magnez) and high-melting superalloys require vacuum/inert melting and special shell systems.

Some magnet and powder-metallurgy alloys are not practical by conventional investment casting.

How do I choose between alloys when several meet performance needs?

Rank requirements (must-have vs desirable), then evaluate manufacturability (foundry capability, need for HIP or vacuum melt), koszt, lead time and inspection burden.

Pilot castings and life-cycle cost analysis help select the optimal trade-off.

Do all alloys need special shell materials or coatings?

Some do. Reactive or high-temperature melts (np., tytan, certain superalloys) may require inert face coats (cyrkon, glinka) and controlled firing to prevent metal-shell reactions.
Discuss shell formulation with your foundry during design.

How does alloy choice affect surface finish and machinability?

Metals like copper alloys and aluminium typically provide excellent surface finish and machinability; nickel and cobalt alloys are harder to machine and may require specialized tooling.

Stainless steels vary—duplex and PH grades machine differently than austenitics. Include machining allowance and tooling considerations in the design.

What about corrosion and environmental compatibility?

Corrosion performance is primarily a function of alloy chemistry and post-casting treatment (obróbka cieplna, pasywacja, powłoka).

For aggressive media (chlorki, kwasy), select corrosion-resistant alloys (Dupleks ze stali nierdzewnej, stopy niklu) and require relevant qualification tests (wżery, SCC).
Environmental regulations (np., Rohs, restricted elements) can also affect alloy choice.

How much more does a superalloy casting cost vs a steel casting?

Costs vary widely by alloy, complexity and post-processing.

Superalloys and reactive metals commonly cost several times more than common steels due to expensive feedstock, vacuum furnaces, BIODRO, and extended NDT.

Use total cost-of-ownership (tworzywo + przetwarzanie + kontrola + dawać) rather than raw melt price alone.

Przewiń do góry