Vara un vara sakausējuma liešanas metodes

Virsotne 8 Vara un vara sakausējuma liešanas metodes

1. Ievads

Copper and its alloys occupy a pivotal role in modern industry due to their outstanding electrical conductivity, izturība pret koroziju, un siltuma veiktspēja.

Vēsturiski, civilizations dating back to 5000 BC mastered copper casting in simple stone molds, laying the groundwork for today’s sophisticated techniques.

Šajā rakstā, we explore the full spectrum of copper‑based casting methods, examine their metallurgical principles, and guide engineers in selecting the optimal process for diverse applications.

2. Fundamental Principles of Metal Casting

Every casting method follows four core stages:

  1. Pelējuma izveide – Technicians form a cavity in sand, metāls, keramikas, or plaster that mirrors the part geometry.
  2. Izliešana – Furnaces melt copper (kušanas punkts 1 083 ° C) or alloys up to 1 600 ° C, then pour the liquid into molds.
  3. Sacietēšana – Controlled cooling—guided by thermal conductivity (~ 400 W/m·K for copper) and mold material—drives microstructure development.
  4. Shake‑Out – Once solid, castings exit the mold and undergo cleaning and post‐processing.

Copper’s high thermal conductivity demands higher mold preheat (200-400 °C) and precise pour control to maintain fluidity (viscosity ~ 6 mPa·s at 1 200 ° C).

Papildus, copper’s termiskā izplešanās (16.5 µm/m·K) requires exact pattern offsets to achieve final dimensions.

3. Major Copper Alloy Casting Methods

Vara and its alloys—brasses, bronzas, copper-nickels, and others—are cast using a range of methods that suit different production volumes, mehāniskās prasības, and dimensional tolerances.

Each technique carries distinct advantages and limitations based on alloy characteristics and desired component outcomes.

This section explores the most prominent copper alloy casting methods in modern manufacturing, along with technical insights to guide process selection.

Smilšu liešana

Procesa pārskats & Aprīkojums
Smilšu liešana remains one of the oldest and most widely used methods for casting copper alloys. It involves packing sand around a reusable pattern inside a mold box.

The sand is bonded with clay (zaļās smiltis) or hardened with chemicals (resin-bonded or CO₂-activated sands). After pattern removal, dobumā ielej izkausētu metālu.

Copper Alloy Sand Castings
Copper Alloy Sand Castings

 

Priekšrocības

  • Zemas instrumentu izmaksas, piemērots zemam- līdz vidēja apjoma skrējieniem
  • Flexible part sizes—from a few ounces to several tons
  • Broad alloy compatibility

Ierobežojumi

  • Coarse surface finishes (Ra 6,3-25 µm)
  • Loose tolerances (typically ±1.5–3 mm)
  • Requires post-casting machining for most precision applications

Ieguldījums (Lost-Wasks) Liešana

Precision Shell Building
Investīciju liešana uses a wax model coated with ceramic slurry to build a thin, high-accuracy shell mold. Pēc izdegšanas, molten metal is poured into the preheated ceramic mold.

Copper Alloy Investment Casting
Copper Alloy Investment Casting

Pabalsti

  • Lielisks izmēru precizitāte (±0,1–0,3 mm)
  • Ideāli piemērots sarežģīts, thin-walled geometries
  • Augstāks virsmas apdare (Ra 1,6–3,2 µm)

Izaicinājumi

  • Higher tooling costs (due to the need for injection dies)
  • Longer cycle times, especially for shell construction and burnout
  • Typically economical only for medium-to-high volume ražošanu

Shell Molded Casting

Process Details
Shell molding uses a heated metal pattern coated with resin-bonded sand. When exposed to heat, the resin sets to form a thin shell that acts as the mold.

The process produces more accurate and cleaner castings than traditional sand casting.

Priekšrocības

  • Improved surface quality and definition
  • Tighter tolerances than green sand molds
  • Reduced machining allowance due to near-net shape casting

Ierobežojumi

  • Higher material costs (specialized resins and silica sands)
  • Expensive pattern tooling (metal patterns required)

Centrbēdze

Horizontal vs. Vertical Setups
Centrbēdzes liešanā, izkausētu metālu ielej rotējošā veidnē, either horizontally or vertically.

The centrifugal force distributes the metal against the mold wall, minimizing porosity and ensuring excellent material integrity.

Centrifugal Casting Copper Alloy Bushing
Centrifugal Casting Copper Alloy Bushing

Galvenās priekšrocības

  • High density and reduced porosity—ideal for pressure-retaining components
  • Virziena sacietēšana enhances mechanical properties
  • Piemērots bukses, gredzeni, caurules, and hollow parts
  • Vertical casting often used for small parts; horizontal for large cylinders

Ierobežojumi

  • Ierobežots līdz rotācijas simetriskas daļas
  • Tooling setup is more complex and costly than static casting

Chill Casting

Sacietēšanas kontrole
Chill casting uses metal molds (often iron or steel) to rapidly extract heat from the molten metal. This rapid solidification refines the grain structure and enhances mechanical properties.

Stiprās puses

  • Produces grūtāk, denser castings (līdz 50% increase in hardness vs. smilšu liešana)
  • Excellent for phosphor bronze and gunmetal
  • Cost-effective for repetitive casting of bars, stieņi, and small parts

Ierobežojumi

  • Less suited for sarežģīta ģeometrija
  • Limited size range due to mold constraints

Mirkšana (Hot-Chamber and Cold-Chamber)

Pressure Injection Process
Die casting involves injecting molten copper alloys into a high-strength steel mold under high pressure.

Cold-chamber machines are typically used due to the high melting points of copper alloys.

Die-Cast Brass Water Pump Impeller
Die-Cast Brass Water Pump Impeller

Priekšrocības

  • Fast production rates—ideal for mass production
  • Superior surface finish and precision (Ra 1–2 µm, tolerances ±0.05 mm)
  • Reduces or eliminates machining

Constraints

  • Not all copper alloys are suitable (Piem., high zinc brasses can corrode dies)
  • Die tooling is dārgi (investment of $50,000 vai vairāk)
  • Vislabākais priekš medium to high volumes

Nepārtraukta liešana

Procesa pārskats
Molten metal is poured into a water-cooled mold that continuously forms and pulls solidified metal through a withdrawal system.

Common outputs include rods, bāri, and billets for downstream machining or rolling.

Priekšrocības

  • High productivity with minimal human intervention
  • Excellent mechanical properties due to controlled solidification
  • Smooth surfaces and straightness suitable for automatic feed machining
  • Low scrap rate and better yield (pāri 90% materiālu izmantošana)

Tipiski sakausējumi

  • Tin bronzes, leaded bronzes, phosphor bronzes, and copper-nickels

Plaster Mould Casting

Specializēta lietošana
This process employs plaster or ceramic molds formed around a pattern to capture fine detail and tight tolerances.

The mold is removed after casting by breaking or dissolving the plaster.

Priekšrocības

  • Excellent for sarežģītas formas un gludas virsmas apdares
  • Good for prototipus un maza apjoma ražošanu

Trūkumi

  • Zema caurlaidība—limits to casting size
  • Longer preparation time un limited mold life

Kopsavilkuma salīdzināšanas tabula

Liešanas metode Virsmas apdare (Ra) Izmēru tolerance Typical Volumes Galvenās stiprās puses
Smilšu liešana 6.3-25 µm ±1.5–3 mm Zema līdz augsta Zemas izmaksas, alloy flexibility
Investīciju liešana 1.6-3,2 µm ±0,1–0,3 mm Vidēja līdz augsta Augsta precizitāte, sarežģītas daļas
Shell Molded Casting 1.6-3,2 µm ±0,25–0,5 mm Vidējs Stingras pielaides, gatavs automatizācijai
Centrbēdze 3.2-6,3 µm ±0.25–1.0 mm Vidējs Augsts blīvums, minimāli defekti
Chill Casting 3.2-6,3 µm ±0,5–1,0 mm Vidējs Enhanced mechanical properties
Mirkšana 1-2 µm ± 0,05–0,2 mm Augsts Fast cycles, minimal machining
Nepārtraukta liešana 3.2-6,3 µm ±0.2–0.5 mm/m Ļoti augsts Cost-efficient billet production
Plaster Mould Casting 1.6-3,2 µm ±0,1–0,3 mm Zema līdz vidēja Detailed, sarežģītas formas

4. Common Copper Alloys Used in Casting

Foundries cast a wide array of copper‑based alloys, each engineered to balance mechanical strength, izturība pret koroziju, thermal and electrical performance, un castability.

Aluminum Bronze Check Valve Castings
Aluminum Bronze Check Valve
Sakausējums Apzīmējums Sastāvs (WT%) Galvenās īpašības Preferred Casting Methods Tipiskas lietojumprogrammas
Brīva mašīna misiņš C36000 / CZ121 61 Cu–35 Zn–3 Pb Stiepts: 345 MPa
Pagarināšana: 20 %
Vadītspēja: 29 % IACS
Smiltis, Ieguldījums, Nomirt, Apvalka formēšana CNC‑machined fittings, pārnesumi, elektriskie termināli
Low‑Lead Brass C46400 / CZ122 60 Cu–39 Zn–1 Pb Stiepts: 330 MPa
Pagarināšana: 15 %
NSF‑61 compliant
Smiltis, Ieguldījums, Nomirt Potable‑water valves, santehnikas aprīkojums
Nesot bronzu C93200 90 Cu–10 Sn Stiepts: 310 MPa
Cietība: HB 90
Lieliska nodilumizturība
Smiltis, Chill, Centrbēdzes Bukses, vilces paplāksnes, heavy‑load bearings
Alumīnija bronza C95400 88 Cu–9 Al–2 Fe–1 Ni Stiepts: 450 MPa
Cietība: HB 120
Strong seawater corrosion resistance
Nomirt, Centrbēdzes, Apvalka formēšana Jūras aparatūra, sūkņa lāpstiņriteņi, vārstu komponenti
Fosfora bronza C51000 94.8 Cu–5 Sn–0.2 P Stiepts: 270 MPa
Pagarināšana: 10 %
Good fatigue & spring properties
Ieguldījums, Smiltis, Nomirt Atsperes, elektriskie kontakti, diaphragms
Copper‑Nickel (90–10)
C70600 90 Cu–10 Ni Stiepts: 250 MPa
Pagarināšana: 40 %
Exceptional biofouling resistance
Smiltis, Centrbēdzes, Nepārtraukts Seawater heat‑exchangers, marine piping
Copper‑Nickel (70–30) C71500 70 Cu–30 Ni Stiepts: 300 MPa
Superior chloride and erosion resistance
Smiltis, Nepārtraukts, Centrbēdzes Condenser tubes, offshore hardware
Berilija vara C17200 98 Cu–2 Be Stiepts: up to 1 400 MPa (vecumā)
Vadītspēja: 22 % IACS
Ieguldījums, Chill, Nomirt High‑reliability springs, non‑sparking tools, savienotāji
Silīcija bronza C65500 95 Cu–5 Si Stiepts: 310 MPa
Corrosion resistant in marine/chemical
Smiltis, Ieguldījums, Apvalka formēšana Decorative hardware, kuģu piederumi

5. Secinājums

Copper and copper‑alloy foundries offer a rich toolbox of casting methods—each balancing maksāt, precizitāte, mehāniskā veiktspēja, un ražošanas apjoms.

By understanding process nuances—from mold materials and thermal management to alloy behavior—engineers can optimize part design, minimize scrap, and ensure reliable performance.

As technologies like additive mold fabrication un real‑time simulation nobriedis, copper casting will continue to evolve, sustaining its critical role in high‑performance manufacturing.

Pie Šis, Mēs ar prieku apspriežam jūsu projekta projektēšanas procesa sākumu, lai nodrošinātu, ka kāds sakausējums ir izvēlēts vai tiek piemērota pēckastā ārstēšana, Rezultāts atbildīs jūsu mehāniskajām un veiktspējas specifikācijām.

Lai apspriestu jūsu prasības, e -pasts [email protected].

FAQ

Can all copper alloys be die-cast?

Ne. Only specific alloys like aluminum bronzes, high-tensile brasses, un silicon brasses are suitable for mirkšana due to the high pressures and rapid cooling involved.

Sakausējumi, piemēram fosfora bronza vai gunmetal are better suited to sand or chill casting.

What’s the difference between centrifugal and chill casting?

  • Centrbēdzes liešana uses rotational force to push molten metal into the mold, producing dense, defect-free components (ideal for pipes, bukses, un piedurknes).
  • Chill casting uses static metal molds to rapidly solidify the surface, improving mechanical properties and reducing grain size—especially effective for tin bronzes.

Why is continuous casting preferred for high-volume copper alloy bars?

Continuous casting offers consistent quality, lieliskas mehāniskās īpašības, and low scrap rates.

It’s optimal for fosfora bronza, gunmetal, un svina bronza sagataves, especially when integrated with rolling or extrusion processes.

What post-processing is required after casting copper alloys?

Depending on the casting method and alloy, post-processing may include:

  • Heat treatment for stress relief or aging (especially for beryllium copper)
  • Machining for critical surfaces or tight tolerances
  • Surface finishing such as polishing or coating for corrosion protection or aesthetics
Ritiniet līdz augšai