1. Bekendstelling
A Flanged butterfly valve (FBV) is a quarter-turn valve widely recognized as the workhorse of high-pressure and permanent fluid control systems.
Characterized by their integral flanges that bolt directly to pipeline flanges, they provide a rigid, leak-proof, and structurally stable connection,
a critical advantage over wafer-style valves (space-saving but suited for low-pressure duties) and lug-style valves (moderate pressure, often for non-critical service).
Engineered for medium to large-diameter pipelines, flanged butterfly valves combine stywe afskakeling, structural reliability, and ease of maintenance.
Terselfdertyd, their versatility makes them indispensable in waterbehandeling, HVAC networks, and general industrial processing, where their kompakte ontwerp, cost-efficiency, and adaptability across pressure and temperature ranges deliver long-term operational value.
2. What is a Flanged Butterfly Valve?
Core Definition and Working Principle
N flanged butterfly valve (FBV) is 'n quarter-turn rotary klep designed for regulating or isolating flow in pipelines.
Its defining feature is the integral flanges, which bolt directly to pipe flanges (per ANSI B16.5 or ISO 7005), creating a rigid, leak-tight, and permanent connection suitable for high-pressure service.

The valve operates on a simple principle:
- Fully Open (0°): The disc lies parallel to flow, minimizing pressure loss (typically 1–3 psi for a 6-inch valve at nominal flow).
- Throttling (10–80°): Partial rotation restricts flow; eccentric disc designs provide more linear flow control than concentric types.
- Fully Closed (90°): The disc presses firmly against the seat, achieving tight shutoff. FBVs are tweerigting, handling forward and reverse flows effectively.
Anatomy of a Flanged Butterfly Valve
A flanged butterfly valve is engineered for durability and precision control, typically comprising six core components:
| Komponent | Design Features | Primary Role |
| Liggaam (with Flanges) | Cast/forged with integral flanges; bolt holes align to pipeline flanges. | Provides pressure boundary and permanent mounting. |
| Skyf | Circular plate (flat or eccentric profile). | Rotates to open/close or throttle flow. |
| Stam (Shaft) | Solid rod, sealed by packing/O-rings. | Transmits torque from actuator to disc. |
| Sitplek | Resilient (EPDM/PTFE) of metaal (Stelliet, SS). | Ensures leak-tight sealing against the disc. |
| Flange Gasket | Compressible sealing material between flanges. | Prevents external leakage. |
| Actuator | Manual, elektries, pneumaties, or hydraulic. | Provides quarter-turn control for isolation or modulation. |
Flanged vs. Wafer vs. Lug Butterfly Valves
Die integral flange design sets FBVs apart from wafer and lug types, offering unique advantages for high-demand applications:
| Kenmerk | Flens vlinderklep | Wafer vlinder klep | Lug Butterfly Valve |
| Mounting | Bolted via integral flanges | Clamped between flanges | Bolted via threaded body lugs |
| Drukgradering | ANSI 150–900 (28–210 bar) | ANSI 150–300 (28–70 bar) | ANSI 150–600 (28–140 bar) |
| Gewig (6-duim, SS) | ~12 kg | ~5.6 kg | ~8 kg |
| Pipeline Disassembly | Requires unbolting flanges | Requires removing flange pair | Valve-only removal possible |
| Relatiewe koste | Hoër (1.5×) | Laat sak (0.7×) | Medium (1.0×) |
| Best For | High-pressure, permanent service (olie, gas, stoom, chemikalieë) | Low-pressure, compact systems | Medium-pressure, flexible maintenance needs |
3. Design Variations: Concentric vs. Eccentric Flanged Butterfly Valves
Flanged butterfly valves are classified primarily by disc and stem alignment, a critical factor influencing drukgradering, verseëlingsprestasie, torque requirements, en geskiktheid van toepassings.
Concentric Flanged Butterfly Valves (Standard Design)
Geometry: The disc and stem axes align with the valve’s bore center, making the design concentric. During operation, the seat maintains contact across the entire disc surface.

Performance Metrics:
- Drukgradering: ANSI Class 150–300 (28–70 bar at 20°C)
- Leakage Class: Api 609 Klas IV (≤0.01% of nominal flow for liquids)
- Torque Requirement: 60–100 N·m (6-inch valve, EPDM seat)
- Cycle Life: 10,000–20,000 cycles (resilient seat limits lifespan)
Voordele:
- Eenvoudig, cost-effective design
- Easy maintenance and seat replacement
- Suitable for moderate temperature and pressure fluids
Beperkings:
- High disc-seat friction reduces efficiency
- Not suitable for gas service or high-pressure applications
- Limited durability under abrasive or high-temperature fluids
Tipiese toepassings:
- HVAC chilled water systems
- Municipal water distribution
- Low-pressure, non-critical industrial services
Eccentric Flanged Butterfly Valves (High-Performance Design)
Overview: Eccentric designs offset the disc or stem, reducing disc-to-seat friction and enhancing sealing performance.
These designs are ideal for hoë druk, hoë temperatuur, and gas applications.
Single Eccentric (Offset Disc) Flens vlinderklep
Ontwerp: The disc center is offset from the stem axis, which minimizes contact with the seat during rotation, reducing friction.

Performance Metrics:
- Drukgradering: ANSI Class 300–600 (70–140 bar)
- Leakage Class: Api 609 Klas V (≤0.001% of nominal flow)
- Torque Requirement: 40–70 N·m (6-inch valve, PTFE seat)—~30% lower than concentric valves
Aansoeke:
- Industrial water treatment
- Low-pressure oil lines
- Applications requiring moderate flow control with improved efficiency
Double Eccentric (Offset Disc + Stam) Flens vlinderklep
Ontwerp: Both the disc center and stem axis are offset from the bore center. This eliminates disc-seat contact until 80–85% of closure, significantly reducing friction and wear.

Performance Metrics:
- Drukgradering: ANSI -klas 600 (140 bar at 20°C); tot klas 900 with metal seats
- Leakage Class: Api 609 Klas VI (≤0.00001% of nominal flow) — suitable for gas service, including natural gas pipelines
- Temperatuurreeks: -29° C tot 482 ° C (metal seats)
Aansoeke:
- Chemiese verwerking
- Olie & gaspypleidings
- Stoomstelsels
- High-pressure industrial fluids requiring tight shutoff
Triple Eccentric (Offset + Tapered Disc) Flens vlinderklep
Ontwerp: Voeg 'n by third offset by introducing a conical/tapered disc geometry, achieving a metal-to-metal seal without the need for an elastic seat.
This design enables operation under extreme temperatures and pressures.

Performance Metrics:
- Drukgradering: ANSI -klas 900 (210 bar at 20°C)
- Temperatuurreeks: -29°C to 650°C (Stellite® or hard metal seats)
- Cycle Life: 50,000–100,000 cycles (metal seat durability)
Aansoeke:
- Hypersonic vehicle cooling systems
- Power plant superheated steam lines
- Refinery catalytic crackers and petrochemical processing
- Extreme industrial environments requiring zero-leakage and long life
Opsomming:
| Kenmerk | Concentric | Single Eccentric | Double Eccentric | Triple Eccentric |
| Disc-Stem Alignment | Centerline | Disc offset | Skyf + stem offset | Skyf + stam + conical offset |
| Drukgradering | 28–70 bar | 70–140 bar | 140–210 bar | 210 verbod |
| Leakage Class | IV | V | VI | VI (metaal) |
| Torque Requirement | Gematig | Lower than concentric | Hoër | Hoog (requires actuator) |
| Temperatuurreeks | - | Gematig | -29° C tot 482 ° C | -29°C to 650°C |
| Tipiese gebruik | Low-pressure water/HVAC | Moderate industrial fluids | High-pressure fluids/gases | Extreme industrial/petrochemical |
4. Materiaal & Seals of Flanged Butterfly Valve
Die uitvoering, betroubaarheid, and longevity of double flanged butterfly valves (FBVs) are strongly influenced by Materiële seleksie for the body, skyf, stam, and sealing elements.
Proper materials ensure compatibility with the fluid, resistance to corrosion, high-pressure handling, and suitability for temperature extremes.

Body Materials
The valve body is the primary pressure boundary and must withstand meganiese spanning, internal pressure, and environmental corrosion. Common body materials include:
| Materiaal | Kenmerke | Tipiese toepassings |
| Koolstofstaal (A216 WCB) | Hoë krag, matige weerstand teen korrosie, Koste-effektief | Water, stoom, low-corrosive chemicals |
| Vlekvrye staal (316/316L, A351 CF8M) | Uitstekende korrosieweerstand, higiënies, moderate high-temperature resistance | Chemiese verwerking, voedsel & drankie, marine environments |
| Smeebare yster (EN-GJS-400-15, ASTM A536) | Goeie krag, Koste-effektief, corrosion-resistant when coated | Water distribution, afvalwater, HVAC |
| Legeringsstaal (Hastelloy C276, Dupleks 2205) | Superior chemical and temperature resistance | Petrochemies, sure, aggressive industrial fluids |
Disc Materials
The disc is directly exposed to flow and often handles skuurmiddel, erosive, or corrosive fluids. Selection is based on meganiese krag, korrosieweerstand, and sealing compatibility:
- 316 Vlekvrye staal: Widely used for general-purpose chemical, water, and steam applications.
- Hastelloy C276: Resistant to oxidizing and reducing chemicals; suitable for aggressive acids.
- Ductile Iron with PTFE Coating: Low-friction, corrosion-resistant option for water and mild chemicals.
- Stelliet®-Clad Discs: High-temperature and high-wear applications, including superheated steam and petrochemicals.
Design Note: The disc may be concentric, eccentric, or triple-offset, with metal or resilient coating to improve sealing and reduce wear.
Stem Materials
The stem transmits torque from the actuator or handwheel to the disc and is exposed to meganiese spanning, druk, and fluid contact. Common materials:
| Materiaal | Kenmerke | Aansoeke |
| 416 Vlekvrye staal | Hoë krag, Goeie korrosieweerstand, Koste-effektief | Water, HVAC, general industry |
| 316/316L vlekvrye staal | Uitstekende korrosieweerstand, moderate high-temperature resistance | Chemies, sag, voedsel & drankie |
| Hastelloy C276 / Duplex Steel | Extreme corrosion and temperature resistance | Aggressiewe chemikalieë, high-pressure petrochemical |
Seat Materials and Seal Types
Die seat forms the critical sealing interface with the disc, determining leakage class, torque requirement, and service life. Selection depends on fluid type, druk, and temperature.
| Seat Type | Materiaal | Leakage Class | Temperatuurreeks | Note |
| Resilient Seat | EPDM, NBR, FKM, Ptfe | Api 609 Class IV–V | -50° C tot 200 ° C | Excellent sealing for liquids; low torque; not for high-temp steam |
| Metal Seat | Vlekvrye staal, Stellite® | Api 609 Klas VI | -29°C to 650°C | High durability; suitable for gases, hoë druk, and high-temperature applications |
| PTFE-Lined | Pure PTFE or filled PTFE | Api 609 Klas V | -50° C tot 200 ° C | Chemically resistant; lae wrywing; may creep under high pressure |
| Elastomer + Metal Hybrid | EPDM/Metal or PTFE/Metal | Api 609 Class V–VI | -29° C tot 482 ° C | Combines leak-tightness with wear resistance; common in double-eccentric designs |
Gaskets and Actuator Interfaces
- Flange Gaskets: Graphite, Ptfe, or nitrile gaskets ensure leak-proof flange connections between the valve and pipeline.
- Actuator Seals: O-rings or PTFE bushings prevent fluid leakage along the stem while enabling smooth torque transfer.
5. Vervaardiging & Foundry Methods of Flanged Butterfly Valves
Die produksie van flanged butterfly valves (FBVs) requires high precision, robust materials, and strict adherence to international standards such as API 609, ISO 5752, and ANSI B16.5.
Valves designed for high-pressure and high-performance applications—like oil & gaspypleidings, chemiese aanlegte, and power generation—must exhibit Dimensionele akkuraatheid, Strukturele integriteit, and leak-tight performance.
Casting Butterfly Valve Components
Casting is the primary method for shaping valve bodies and discs, allowing complex geometries and cost-effective production. For large valves (typically over 12 duim), sand gietstuk is widely used.
In hierdie proses, molten metal (1450–1550°C) is poured into resin-bonded sand molds.
Sand casting offers tolerances around ±0.5 mm, making it suitable for carbon steel or ductile iron valves used in municipal water or low-pressure industrial pipelines.
For small-to-medium valves (2–12 inches) requiring high dimensional precision and corrosion resistance, Beleggingsgooi (lost wax method) is employed. Wax patterns are coated with ceramic shells, melted out, and replaced with molten metal.
This method achieves tight tolerances (±0,1 mm) en gladde oppervlaktes, enabling precise features such as double eccentric disc hubs.
Investment casting is ideal for 316L stainless steel, Hastelloy, or other corrosion-resistant alloys.
Smee: High-Strength Components
Forging is the preferred method for critical, high-pressure components such as bodies, flense, and stems, because it produces superior grain structure and higher tensile strength.
Heated metal (1100–1200°C) is shaped under hydraulic presses or dies, resulting in 20–30% stronger parts than equivalent castings.
Forged components are typically used in ANSI Class 600 or higher valves for oil & gaspypleidings, kragsentrales, and other demanding industrial applications.
Forging methods include open-die forging for large custom parts, closed-die forging for medium-sized components with precise dimensions, and upset forging to reinforce critical junctions like disc hubs.
Bewerking: Precision Finishing
After casting or forging, CNC -bewerking ensures high dimensional accuracy, oppervlakafwerking, and proper alignment:
- Flange faces are milled to achieve flatness within 0.1 mm and bolt hole alignment per ANSI B16.5 standards, ensuring leak-free connections.
- Seat bores are honed or machined to Ra 1.6–3.2 μm to allow proper seat bonding and effective sealing.
- Discs and hubs, especially eccentric designs, are finished with 5-axis CNC milling to maintain flatness within 0.05 mm for tight shutoff.
- Stems and bearings are turned and milled with precision to guarantee smooth rotation and correct torque transfer.
Hittebehandeling: Mechanical and Corrosion Properties
Heat treatment improves strength, hardheid, and corrosion resistance depending on the material used:
- Koolstofstaal (WCB): Quenched at 850°C and tempered at 650°C to achieve tensile strength ≥485 MPa.
- 316L vlekvrye staal: Solution-annealed at 1050–1100°C followed by water quenching to restore corrosion resistance and homogenize microstructure.
- Dupleks 2205: Solution-annealed at 1020–1080°C to achieve a balanced austenite/ferrite ratio (50:50), optimizing both strength and corrosion resistance.
Oppervlakbehandeling: Langlewendheid & Korrosieweerstand
Surface finishing ensures durability in harsh environments:
- Passivering for 316L stainless steel enhances the natural chromium oxide layer, improving corrosion resistance by up to 20%.
- Epoksiebedekkings of 100–150 μm protect carbon steel bodies in oil & gas pipelines from soil and atmospheric corrosion.
- Elektropolisering is used in sanitary applications (voedsel, drankie, farmaseutiese produkte) to achieve Ra ≤0.8 μm, eliminating microscopic crevices and bacterial dead zones.
Byeenkoms & Kwaliteitversekering
After machining and surface treatment, valves undergo assembly and rigorous quality control:
- Seat and disc integration: Seats are bonded or pressed, and eccentric discs are carefully aligned for precise shutoff.
- Stem installation: Rigting, verpakking, and O-rings are fitted, and torque is verified.
- Hydrostatic or pneumatic testing: Confirms leak-tight performance under design pressure.
- Nie-vernietigende toetsing (Ndt): Methods such as X-ray, ultrasonies, or dye penetrant inspections detect internal defects.
- Actuator calibration: Manual, elektries, pneumaties, or hydraulic actuators are tested for torque and stroke accuracy.
6. Drukgradering, Groottes & Standaarde
Flanged butterfly valves (FBVs) are designed for reliability across a wide range of pressures, groottes, and industrial standards.
Proper selection ensures safety, long-term performance, and compatibility with pipeline systems.
Drukgradering
| Drukklas | Max Working Pressure (20° C) | Typical Seat Material | Note / Aansoeke |
| ANSI -klas 150 | 19 verbod | EPDM, Ptfe | Low-pressure water and HVAC systems |
| ANSI -klas 300 | 51 verbod | EPDM, Ptfe | Munisipale water, low-pressure industrial pipelines |
| ANSI -klas 600 | 102 verbod | Metaal, Composite | Olie & gas, chemiese verwerking |
| ANSI -klas 900 | 155 verbod | Metaal | Hoë druk stoom, raffinadery, extreme temperature service |
Standard Sizes
| Nominal Diameter (DN) | Inch Size | Tipiese toepassings | Note |
| DN 50–150 | 2–6 | Laboratory systems, HVAC, small water pipelines | Compact, easy to install |
| DN 200–600 | 8–24 | Munisipale water, chemiese verwerking, industrial pipelines | Standard industrial range |
| DN 700–1200 | 28–48 | Large-scale oil & gas, Afvalwaterbehandeling, kragsentrales | High-flow, Hoëdrukdiens |
| DN 1400–2000+ | 56–80+ | Heavy industrial, raffinaderye, hydroelectric | Custom manufacturing often required |
Face-to-Face Dimensions: Usually conform to ISO 5752 Reeks 10 or API 609 for easy interchangeability.
Key Standards & Certifications
| Standaard / Certification | Scope | Toepassing / Relevansie |
| Api 609 | Ontwerp & testing of industrial butterfly valves | General industrial service |
| ISO 5752 | Face-to-face & flange dimensions | Ensures interchangeability |
| ASME B16.34 | Pressure-temperature ratings for metallic valves | Structural integrity & veiligheid |
| MSS SP-67 | Sizing & flow coefficient standardization | Accurate flow control |
| ASTM A216 / A351 | Koolstofstaal & stainless steel castings | Material quality for pressure service |
| ASME B16.5 | Flens afmetings & bolt patterns | Compatibility with pipelines |
| Api 598 / ISO 5208 | Shell & seat leakage testing | Ensures leak-tight performance |
| NACE MR0175 / ISO 15156 | Corrosion resistance for sour oil & gas service | Long-term reliability in aggressive environments |
| PED 2014/68/EU | Pressure equipment compliance (Europa) | Legal & safety compliance for EU installations |
7. Actuation & Control Systems
Flanged butterfly valves are quarter-turn devices requiring actuators capable of 90° rotation.
Actuator selection depends on valve size, torque requirement, fluid type, and control sophistication.

Common Actuator Types and Specifications
| Actuator Type | Typical Valve Size (Inches) | Torque Range (N·m) | Power / Energy Source | Reaksie Tyd | Control Capability | Fail-Safe Option |
| Manual Handwheel | 2–6 | 10–50 | Human operation | <5 s | On/Off | N/A |
| Gear Operator | 8–24 | 80–300 | Manual with mechanical advantage | 30–60 s | On/Off | N/A |
| Electric Actuator | 2–36 | 50–1000 | AC 110/220V, DC 24V | 5–30 s | Modulating /On/Off | Battery backup |
| Pneumatic Actuator | 2–36 | 50–500 | 6–8 bar compressed air | 0.5–5 s | Modulating /On/Off | Spring return |
| Hydraulic Actuator | 12–48 | 500–2000 | 10–30 MPa hydraulic fluid | 1–10 s | On/Off | Pressure reserve |
Key Accessories for Enhanced Control
- Positioners: Provide precise modulating control (±0.5% accuracy), crucial for applications like HVAC chilled water, chemiese dosering, or industrial process lines.
- Torque Switches: Protect the disc and seat from over-torquing, preventing premature wear or damage.
- Limit Switches: Deliver open/closed position feedback to SCADA or DCS systems for remote monitoring and automated safety protocols.
- Solenoid Valves & Air Filters (for pneumatic actuators): Ensure rapid, reliable actuation while protecting internal actuator components from contaminants.
8. Flanged End Geometry & Interface
Die flanged end design is the defining characteristic of butterfly flange valves, ensuring a rigid, secure, and leak-tight connection to pipeline systems.
The geometry is standardized globally to allow full interchangeability across manufacturers.
Flange Standards & Compatibility
Flanged butterfly valves are machined to match pipeline flanges in dimensies, bolt-hole patterns, and pressure ratings. The most common standards include:
| Standaard | Streek / Toepassing | Drukklasse | Note |
| ASME B16.5 | North America / Wêreldwyd | Class 150–900 | Widely used in oil, gas, chemies, and power sectors |
| ISO 7005 | International | PN 6–PN 160 | Metric system equivalent to ASME |
| In 1092-1 | Europa | PN 10–PN 160 | Used across EU pipelines and process industries |
| JIS B2220 | Japan / Asia | 5K–40K | Common in Asian industrial networks |
Dimensional Geometry
The flanged end geometry typically includes:
- Raised Face (RF): Standard sealing surface, 2–6 mm raised area around the bore, ensures even gasket compression.
- Flat Face (FF): Used with cast iron pipelines to avoid overstressing flanges.
- Ring-Type Joint (RTJ): Machined grooves for metal gaskets, suited for high-pressure/high-temperature services (op na 210 verbod, 650° C).
| Geometry Type | Pressure Range | Tipiese toepassings |
| Flat Face (FF) | Laag (PN 6–PN 16) | Water distribution, HVAC |
| Raised Face (RF) | Medium (PN 10–PN 100) | Olie & gas, chemiese aanlegte |
| RTJ | Hoog (PN 100–PN 160, Class 600–900) | Buiteland, refining, Stoomlyne |
9. Industrial Applications of Flanged Butterfly Valves
Flanged butterfly valves are veelsydig, high-performance quarter-turn valves widely used across industrial sectors due to their reliability, kompakte ontwerp, and adaptability to a broad range of pressures, temperature, and fluids.
Water- en afvalwaterbehandeling
- Toepassing: Flow isolation, chemiese dosering, and backwashing systems.
- Voordele: Tight shutoff, low-pressure drop, corrosion-resistant seats for treated water or chemical additives.
- Voorbeeld: Municipal water distribution networks employ butterfly flange valves for diameters exceeding 12 duim, ensuring maintenance-friendly operation.
Olie- en gasbedryf
- Toepassing: Crude oil pipelines, Verfynde produkte, gas distribution, and offshore platforms.
- Voordele: High-pressure tolerance (ANSI -klas 600 and above), bidirectional flow capability, compatibility with hydrocarbons and corrosive fluids.
- Voorbeeld: Double or triple eccentric flanged butterfly valves control oil and gas pipelines where minimal leakage and high reliability are mandatory.
Kragopwekking
- Toepassing: Steam, cooling water, and feedwater systems in thermal and nuclear plants.
- Voordele: Hoë temperatuur verdraagsaamheid, tight sealing for steam lines, rapid quarter-turn actuation for safety.
- Voorbeeld: Triple eccentric butterfly flange valves handle superheated steam at 482°C in power plant feedwater lines.
Chemiese en petrochemiese verwerking
- Toepassing: Aggressiewe chemikalieë, sure, and high-temperature processes.
- Voordele: Materiële veelsydigheid (316L, Hastelloy, Dupleks 2205), Presiese smoor, minimal friction for controlled flow.
- Voorbeeld: Eccentric flanged butterfly valves with metal seats prevent leakage in sulfuric acid or caustic soda lines.
Verwarming, Ventilasie, and Air Conditioning (HVAC) and Industrial Chilled/Hot Water Systems
- Toepassing: Flow regulation in chilled water loops, cooling towers, and heating systems.
- Voordele: Cost-effective, liggewig, low-pressure rating suitable for non-critical applications, Maklike onderhoud.
- Voorbeeld: Concentric butterfly flange valves regulate building-wide chilled water distribution efficiently.
Voedsel, Beverage, and Pharmaceutical Industries
- Toepassing: Sanitary processing lines, CIP (Clean-in-Place) sis sismer.
- Voordele: Electropolished stainless steel, FDA-approved seats, smooth surfaces eliminate bacterial growth zones.
- Voorbeeld: Flanged butterfly valves with EPDM or PTFE seals ensure hygienic flow control in beverage bottling plants.
Mining and Slurry Handling
- Toepassing: Tailings pipelines, slurry transport, and water control.
- Voordele: Robust construction, abrasion-resistant discs and seats, compatibility with viscous or particle-laden fluids.
- Voorbeeld: Carbon steel double flanged butterfly valve with hardened seats handle mineral slurries without rapid wear.
10. Comparison with Other Valves
| Kenmerk / Kleptipe | Flens vlinderklep | Hekklep | Globe klep | Balklep | Prop klep |
| Operation | Quarter-turn (90°) | Lineêr (rising/non-rising stem) | Lineêr (throttle/open/close) | Quarter-turn (90°) | Quarter-turn (90°) |
| Shutoff Capability | Moderate to tight (Class IV–VI) | Uitmuntend (metal-to-metal) | Uitmuntend (metal-to-metal) | Uitmuntend (Bubble-Tight) | Goed tot uitstekend |
| Drukgradering | ANSI Class 150–900 (28–210 bar) | ANSI Klas 150–2500 | ANSI Class 150–600 | ANSI Class 150–900 | ANSI Class 150–600 |
| Flow Control / Throttling | Matige presisie; eccentric design improves | Arm; mainly on/off | Uitmuntend; designed for throttling | Beperk; mostly on/off | Gematig |
| Size Range | 2–48 inches (DN50–1200) | 0.5–120 inches | 0.5–48 inches | 0.5–48 inches | 0.5–24 inches |
| Gewig | Light to moderate | Heavy | Gematig | Light | Gematig |
| Onderhoud | Maklik (flanged connection; seat replacement) | Moeilik (disassembly, heavy components) | Gematig (stam verpakking, Sitplekdrag) | Maklik (ball removal, minimal parts) | Gematig |
| Koste bereken | Gematig | Hoog | Hoog | Hoog | Gematig |
| Installation Space | Compact | Groot | Gematig | Compact | Gematig |
| Beste toepassings | Water, afvalwater, HVAC, chemies, olie & gaspypleidings | High-pressure isolation | Vloeiregulering en smoor | On/off control, corrosive fluids, hoë druk | Slurries, olie, gas, corrosive liquids |
| Bidirectional Flow | Ja | Ja | Usually | Ja | Usually |
| Reaksie Tyd | Vas (kwarte draai) | Stadig (linear travel) | Stadig | Vas (kwarte draai) | Vas (kwarte draai) |
11. Konklusie
Die flanged butterfly valve is a versatile and cost-efficient solution for fluid control, offering a balance of compact design, high flow capacity, and reliable sealing.
Its adaptability to different materials, drukklasse, and actuation methods makes it indispensable across industries ranging from municipal water to petrochemicals.
For engineers and procurement teams, selecting the right FBV involves evaluating media compatibility, Bedryfsomstandighede, performance metrics, and lifecycle costs.
With ongoing advances in materials and automation, flanged butterfly valves will remain a cornerstone of industrial flow control.
Custom Valves from DEZE Foundry
From water treatment plants and HVAC systems to oil & gaspypleidings, Chemiese reaktore, and power generation networks, flanged butterfly valves deliver precise flow regulation and tight shutoff under demanding conditions.
Their quarter-turn operation, compact structure, and wide material options enable customization for specific fluids, druk, en temperature.

As a professional valve foundry and supplier, we provide custom-engineered flanged butterfly valves and precision-cast components, meeting international standards (Api, ISO, ANSI) while ensuring cost-effective performance.
Whether your project requires large-diameter high-pressure service, corrosion-resistant alloys, or optimized designs for maintenance efficiency, our manufacturing expertise ensures reliable solutions tailored to your industry.
Kontak ons now!
Vrae
Can flanged butterfly valves handle high-pressure gas service?
Yes—double/triple eccentric flanged valves with metal seats (Api 609 Class VI leakage) and ANSI Class 300–900 ratings are suitable for high-pressure gas (Bv., aardgas, stikstof).
Ensure compliance with ISO 15848-1 Class AH for low fugitive emissions.
What is the maximum size of a flanged butterfly valve?
Most manufacturers offer flanged butterfly valves up to 48 duim (1200 mm) in diameter, suitable for large water treatment plants and oil & gaspypleidings.
Custom designs can reach 60 duim (1500 mm) for specialized applications.
How do I prevent flange gasket leakage?
Use gaskets compatible with fluid/temperature (Bv., graphite for steam, PTFE for chemicals); tighten bolts in a crisscross pattern (per ASME PCC-1) to uniform torque (Bv., 70 N·m for 6-inch ANSI 300 flense); replace gaskets annually.
Are flanged butterfly valves suitable for sanitary service?
Yes—select 316L bodies with electropolished surfaces (Ra ≤0.8 μm), PTFE seats, and tri-clamp flanges (3-A/EHEDG compliant).
These valves are used in dairy, drankie, and pharmaceutical manufacturing.
What is the difference between ANSI Class 300 en 600 flanged valves?
ANSI -klas 300 valves handle up to 70 verbod (20° C), while Class 600 handles up to 140 verbod (20° C).
Indeel 600 valves have thicker bodies (20–30 mm vs. 15–20 mm for Class 300) and stronger flanges, making them suitable for high-pressure applications like refineries and offshore pipelines.



