1. Вступ
Sand casting has powered the iron foundry industry for centuries, enabling the production of complex geometries at relatively low cost.
Recently, Ущільнений графітовий чавун (CGI)—also known as vermicular graphite iron—has emerged as a material bridging the gap between traditional gray cast iron and ductile iron.
By combining desirable properties of both, CGI offers higher tensile strength and thermal conductivity than gray iron, yet retains superior castability and damping compared to ductile grades.
У цій статті, we examine “what is sand casting with CGI?” through metallurgical, обробка, механічний, and economic lenses.
We aim to present a comprehensive yet practical resource for foundry engineers, design professionals, and materials researchers interested in harnessing CGI’s benefits.
2. Ущільнений графітовий чавун (CGI): Metallurgy and Properties
Compacted (вермикулярний) graphite iron (CGI) occupies an intermediate position between gray iron and ductile iron:
its unique graphite morphology yields a combination of strength, жорсткість, and thermal properties not attainable in other cast irons.

Graphite Morphologies: From Gray to Ductile to CGI
Graphite in cast iron appears in three primary morphologies. Each influences mechanical and thermal behavior:
- Сіре залізо: Flake graphite provides crack‐arresting behavior under vibration but limits tensile properties.
- CGI: Vermicular graphite appears as short, compact “worms” (compactness factor ≥ 60 %), enhancing strength and conductivity while retaining acceptable damping.
- Пластичне залізо: Graphite occurs as nearly perfect nodules; this maximizes ductility but reduces damping and thermal conduction compared to CGI.
Chemical Composition and Alloying Elements
Хімічно, CGI resembles ductile iron but requires tighter control of certain elements, especially magnesium and sulfur, to achieve the desired vermicular graphite form.
Typical target composition (EN-GJV-450-12) appears below:
| Елемент | Типовий діапазон (мас %) | Роль / Ефект |
|---|---|---|
| Вуглець (C) | 3.4 - 3.8 | Provides graphite-forming potential; excess C can lead to carbides. |
| Кремнію (І) | 2.0 - 3.0 | Promotes graphite precipitation; balances ferrite/pearlite ratio. |
| Марганець (Мн) | 0.10 - 0.50 | Controls sulfides and refines grain; excessive Mn ties up C, risking carbide formation. |
| Фосфор (С) | ≤ 0.20 | Impurity; can increase fluidity but reduces toughness if > 0.10 %. |
| Сірка (S) | ≤ 0.01 | Must be minimal to prevent MgS formation, which would inhibit vermicular graphite nucleation. |
Магній (Мг) |
0.03 - 0.06 | Critical for vermicular graphite; too little Mg yields gray iron, too much produces spheroidal graphite (пластичне залізо). |
| церій / Re (Ce) | 0.005 - 0.015 | Acts as a nodulizer/modifier—refines vermicular graphite and stabilizes it against over-inoculation or inconsistent cooling. |
| Мідь (Куточок) | 0.2 - 0.8 | Збільшує силу та твердість; high Cu (> 1 %) can promote carbides. |
Нікель (У) |
≤ 0.5 | Improves toughness and corrosion resistance; often omitted for cost reasons unless specific performance is needed. |
| Молібден (Mo) | ≤ 0.2 | Inhibits carbide formation; helps maintain a ferritic–pearlitic matrix with uniform graphite distribution. |
| Прасувати (Феод) | Балансувати | Основний метал; carries all alloying additions and determines overall metallic properties. |
Key Points:
- Maintaining Mg between 0.035 % і 0.055 % (± 0.005 %) є важливим; falling outside this window shifts graphite morphology.
- Сірка must remain extremely low (< 0.01 %)—even 0.015 % S can tie up Mg as MgS, preventing vermicular graphite formation.
- Кремнію levels above 2.5 % encourage graphite flake growth and a more ferritic matrix, improving thermal conductivity but potentially reducing strength if excessive.
Мікроструктура: Vermicular Graphite in a Ferritic/Pearlitic Matrix
The as‐cast microstructure of CGI depends on solidification rate, щеплення, and final heat treatment. Typical features include:
| Microstructural Feature | Опис | Control Parameter |
|---|---|---|
| Vermicular Graphite Flakes | Graphite flakes with rounded ends; aspect ratio ~ 2:1–4:1; compactness ≥ 60 %. | Mg/RE content, inoculation intensity, швидкість охолодження (0.5–2 °C/s) |
| Феритна матриця | Predominantly α‐iron with minimal carbide; yields high thermal conductivity. | Slow cooling or post‐cast normalization |
| Перлітна матриця | Alternating lamellae of ferrite and cementite (~ 20–40 % перліт); increases strength and hardness. | Швидше охолодження, moderate Cu/Mo additions |
| Carbides (Fe₃C, M₇C₃) | Undesirable if present in significant volume; reduce ductility and machinability. | Excess Si or overly rapid cooling; insufficient inoculation |
| Inoculation Particles | Added ferrosilicon, ferro-barium-silicon, or rare-earth-based inoculants create nucleation sites for vermicular graphite. | Type and amount of inoculant (0.6–1.0 kg/T) |
- Контроль матриці: A ferritic matrix (≥ 60 % ферит) yields thermal conductivity of 40–45 W/m·K,
в той час ferrite–pearlite mixes (30 % - 40 % перліт) push yield strength to 250 - 300 MPA without excessive embrittlement. - Vermicular Graphite Nodule Count: Target 100 - 200 vermicular flakes/mm² in sections ~ 10 мм товщиною. Lower counts reduce strength; higher counts risk transitioning to nodularity.
Механічні властивості (Міцність, Stiffness, Fatigue)
CGI’s mechanical properties combine strength, жорсткість, and moderate ductility. Representative values (EN-GJV-450-12, normalized) appear below:
| Майно | Типовий діапазон | Comparative Benchmark |
|---|---|---|
| Сила на розрив (UTS) | 400 - 450 MPA | ~ 50 % higher than gray iron (200 - 300 MPA) |
| Похідна сила (0.2 % зсув) | 250 - 300 MPA | ~ 60 % higher than gray iron (120 - 200 MPA) |
| Подовження на перерві (A %) | 3 - 5 % | Intermediate between gray iron (0 - 2 %) and ductile iron (10 - 18 %) |
| Модуль еластичності (Е) | 170 - 180 GPA | ~ 50 % higher than gray iron (100 - 120 GPA) |
| Твердість (Brinell HB) | 110 - 200 HB (matrix‐dependent) | Ferritic CGI: 110 - 130 HB; Pearlite CGI: 175 - 200 HB |
| Сила втоми (Rotating Bending) | 175 - 200 MPA | ~ 20 - 30 % higher than gray iron (135 - 150 MPA) |
| Вплив міцність (Charpy V‐Notch @ 20 ° C) | 6 - 10 J | Better than gray iron (~ 4–5 J), below ductile iron (10–15 J) |
Observations:
- Високий Young’s modulus (E ≈ 175 GPA) leads to stiffer components—advantageous in engine blocks and structural parts requiring minimal deflection.
- Fatigue resistance (≈ 200 MPA) makes CGI suitable for cyclical loads (Напр., cylinder heads under thermal cycles).
- Твердість can be tailored via matrix composition: pure ferritic CGI (~ 115 HB) excels in wear applications; pearlitic CGI (~ 180 HB) is chosen for higher strength needs.
Thermal Conductivity and Damping Capacity
CGI’s unique graphite form and matrix produce distinctive thermal and vibrational characteristics:
| Майно | CGI Range | Порівняння |
|---|---|---|
| Теплопровідність | 40 - 45 З/м · k | Сіре залізо: 30 - 35 З/м · k; Пластичне залізо: 20 - 25 З/м · k |
| Specific Heat (20 ° C) | ~ 460 J/кг · k | Similar to other cast irons (~ 460 J/кг · k) |
| Теплове розширення (20–100 ° C) | 11.5 - 12.5 × 10⁻⁶/°C | Slightly higher than gray iron (11.0 × 10⁻⁶/°C) |
| Демпфірування (Log Decrement) | 0.004 - 0.006 | Сіре залізо: ~ 0.010; Пластичне залізо: ~ 0.002 |
- Теплопровідність: High conductivity (40 З/м · k) accelerates heat dissipation from hot spots in engine blocks and turbocharger housings, reducing thermal fatigue risk.
- Damping: CGI’s damping factor (0.004 - 0.006) absorbs vibrational energy better than ductile iron, aiding noise, вібрація, і суворість (NVH) control—especially in diesel engines.
- Коефіцієнт теплового розширення: CGI’s expansion (≈ 11.5 × 10⁻⁶/°C) matches steel engine liners closely, minimizing thermal stresses at the liner/block interface.
3. What Is Sand Casting Compacted Graphite Iron (CGI)?
Пісочний кастинг with compacted graphite iron (CGI) follows the same overall steps as conventional iron sand casting,
mold preparation, melting, виливання, затвердіння, and cleaning—but modifies key parameters to produce CGI’s unique “vermicular” graphite morphology.

Defining the Process
Pattern and Mold Construction
- Дизайн шаблону: Foundries create patterns (often from wood, епоксидний, або алюміній) that include allowances for 3–6 % shrinkage typical of CGI alloys (solidus ~ 1 150 ° C, liquidus ~ 1 320 ° C).
- Sand Selection: Standard silica‐sand molds (проникність > 200, AFS grain fineness ~ 200) work well,
but enhanced binders—phenolic–urethane or furan—help resist CGI’s higher pouring temperature (~ 1 350–1 420 ° C). - Cope and Drag Assembly: Technicians pack the drag around the lower half of the pattern, then remove the pattern and place cores (якщо потрібно) before ramming the cope.
Careful vent placement ensures gas escape when high‐temperature CGI fills the cavity.
Melting and Metal Treatment
- Charge Composition: Typical melts use 70–80 % recycled scrap, 10–20 % pig iron or hot‐metal,
and master alloys to fine-tune chemistry. Foundries aim for C 3.5 ± 0.1 %, І 2.5 ± 0.2 %, and S < 0.01 %. - Magnesium and Rare-Earth Additions: Right before pouring, operators add 0.035–0.055 % Мг (alongside 0.005–0.015 % RE/Ce) in a covered ladle to form vermicular graphite rather than flakes or spheroids.
They stir gently to distribute modifiers uniformly. - Inoculation and De-Oxidation: Foundries inoculate with ~ 0.6–1.0 kg/T of ferrosilicon or barium-silicon inoculant to provide graphite nucleation sites.
Simultaneously, de-oxidants—such as FeSi—scavenge dissolved oxygen and minimize oxide inclusions.
Pouring and Mold Filling
- Superheat Management: Pouring temperature for CGI sits around 1 350–1 420 ° C (2 462–2 588 ° F), roughly 30–70 °C above the liquidus.
This extra superheat ensures complete filling of thin wall sections (до 4 мм) but also increases the risk of sand erosion. - Дизайн: Foundries use a tapered sprue and generous runner cross-sections, sized for a Reynolds number (Re) на 2 000–3 000—to minimize turbulence.
Ceramic foam filters (30–40 ppi) often intercept any inclusions carried into the mold. - Mold Venting: Because CGI fluidity rivals gray iron, proper venting—through bottom vents under risers and controlled permeability—prevents gas entrapment.
Specialized risers (exothermic or insulated) feed molten metal into the last-to-solidify hot spots.
Solidification and Microstructure Control
- Graphite Nucleation: As the molten CGI cools from ~ 1 350 °C to 900 ° C, vermicular graphite nucleates on inoculant sites.
Foundries target a cooling rate of 0.5–2.0 °C/s in sections between 10–15 mm thick to develop 100–200 vermicular flakes per mm². - Matrix Formation: Внизу 900 ° C, the austenite-to-ferrite transition begins.
Rapid cooling yields more pearlite (higher strength but lower thermal conductivity), while moderate cooling produces a primarily ferritic matrix (better heat dissipation).
Foundries often normalize at 900 °C after shakeout to achieve a 60 % ferrite–40 % pearlite balance. - Shrinkage Feeding: CGI shrinks by approximately 3.5 % upon solidification. Risers sized at 10–15 % of casting mass—positioned at strategic hot spots—mitigate shrinkage porosity.
Витряска, Прибирання, and Final Processing
- Витряска: After 30–45 minutes of cooling, foundries break away mold sand using vibrating tables or pneumatic rams. Reclaimed sand undergoes screening and reclamation for reuse.
- Прибирання: Вибух (for ferrous) or air-carbon arc cutting removes residual sand, sprues, and risers. Technicians inspect for surface cracks or fins before heat treatment.
- Термічна обробка (Normalization): CGI castings typically normalize at 900 ° C (1 652 ° F) for 1–2 hours, then air or oil quench.
This step refines grain size and ensures consistent ferrite–pearlite distribution. - Machining and Inspection: After normalization, castings reach final hardness (ferritic CGI ~ 115 HB; pearlitic CGI ~ 180 HB).
CNC centers machine critical surfaces (tolerances ± 0.10 мм) and inspectors verify graphite morphology (vermicularity ≥ 60 %) via metallography.
Key Differences from Gray Iron Sand Casting
| Параметр | Сіре залізо | CGI |
|---|---|---|
| Температура | 1 260–1 300 ° C (2 300–2 372 ° F) | 1 350–1 420 ° C (2 462–2 588 ° F) |
| Graphite Morphology | Лускоподібний графіт (length 50–100 µm) | Vermicular graphite (compact flakes, length 25–50 µm) |
| Melt Treatment | Inoculation only (FeSi) | Mg/RE addition + щеплення |
| Mold Binder Requirements | Standard phenolic or sodium silicate | Higher-strength phenolic/urethane due to erosion risk |
| Cooling Rate Sensitivity | Less critical—flakes form over wide range | More critical—cooling 0.5–2 °C/s needed for vermicular |
| Усадка | ~ 4.0 % | ~ 3.5 % |
| Контроль матриці | Primarily pearlitic or mixed ferrite | Tailored ferrite–pearlite balance via heat treatment |
4. Advantages and Challenges of Sand Casting Compacted Graphite Iron (CGI)

Advantages of Sand Casting CGI
Enhanced Strength and Stiffness
CGI’s tensile strength (400–450 MPa) exceeds gray iron by 50 %, while its modulus of elasticity (170–180 GPa) surpasses gray iron by 50 %.
Як результат, CGI castings exhibit less deflection under load—particularly valuable for engine blocks and structural components.
Improved Thermal Conductivity
With thermal conductivity of 40–45 W/m·K, CGI transfers heat 20–30 % faster than gray iron.
This allows quicker engine warm-up, reduced hot spots, and better resistance to thermal fatigue in cylinder heads and liners.
Balanced Damping
CGI’s damping factor (~ 0.005) falls midway between gray (~ 0.010) and ductile (~ 0.002) irons.
Отже, CGI absorbs vibration effectively—reducing NVH (шум, вібрація, harshness)—while avoiding the high brittleness of gray iron.
Економічно вигідне виробництво
Although CGI adds ~ 5–10 % material cost due to Mg/RE additions and tighter process control, it costs 20–30 % less than ductile iron for equivalent performance.
Lower machining allowances—thanks to improved dimensional stability—further trim casting costs.
Challenges of Sand Casting Compacted Graphite Iron
- Tight Melt Chemistry Control: Maintaining Mg within ±0.005 % is critical. A slight deviation can revert graphite morphology to flake or spheroidal, necessitating full‐scale scrapping.
- Higher Pouring Temperatures: CGI’s 1 350–1 420 ° C (2 462–2 588 ° F) melt demands more robust mold binders and coatings to prevent sand erosion and scabbing.
- Risk of Carbide Formation: Excess silicon or rapid cooling can produce cementite networks, embrittling CGIs; inoculation and controlled cooling are mandatory.
- Porosity Management: CGI’s higher fluidity leads to greater aspiration of gases unless mold venting and degassing practices are exemplary.
- Limited Global Foundry Expertise: Although CGI’s market share has grown (особливо в автомобільному), only 20–25 % of iron foundries worldwide have mastered the specialized procedures, raising lead times.
5. Common Compacted Graphite Iron Applications via Sand Casting

- Automotive diesel engine blocks
- Cylinder heads and liners
- Exhaust manifolds and turbocharger housings
- Pump and compressor housings
- Gearbox and transmission housings
- Industrial engine components (Напр., genset blocks)
- Hydraulic valve bodies and pump blocks
6. Comparisons to Alternate Casting Materials
| Матеріал | Сила на розрив (MPA) | Теплопровідність (З/м · k) | Щільність (g/cm³) | Демпфірування | Корозійна стійкість | Обробка | Відносна вартість | Типові програми |
|---|---|---|---|---|---|---|---|---|
| CGI (Ущільнений графітовий чавун) | 400–450 | 40–45 | ~7.1 | Помірний (~0.005) | Помірний | Помірний | Середній (~ 5–10% > Сіре залізо) | Diesel engine blocks, головки циліндрів |
| Сірий чавун | 200–300 | 30–35 | ~7.2 | Високий (~0.01) | Помірний | Добрий | Низький | Brake discs, machine beds |
| Пластичне залізо | 550–700 | 20–25 | ~7.2 | Низький (~0.002) | Помірний | Помірний | Високий (~20–30% > CGI) | Колінчасті вали, heavy-duty gears |
| Алюмінієві сплави | 150–350 | 120–180 | ~ 2,7 | Низький | Високий | Відмінний | Середній–Високий | Аерокосмічний, automotive casings |
| Вуглецева сталь (Кадати) | 400–800 | 35-50 | ~7.8 | Дуже низький | Низький | Бідний | Високий | Structural, Судна тиску |
| Нержавіюча сталь (Кадати) | 500–900 | 15–25 | ~7.7–8.0 | Дуже низький | Відмінний | Poor–Moderate | Дуже високий (~2× CGI) | Хімічний, харчування, та морське обладнання |
| Магнійні сплави | 150–300 | 70–100 | ~ 1,8 | Низький | Помірний | Добрий | Високий | Lightweight aerospace and electronics |
| Brass/Bronze Alloys | 300–500 | 50–100 | ~8.4–8.9 | Помірний | Високий | Помірний | Високий | Клапани, Морське обладнання, втулки |
7. Висновок
Ущільнений графітовий чавун (CGI) delivers better strength, жорсткість, and thermal performance than gray iron—without the cost of ductile iron.
It requires tight control of chemistry, high pouring temperatures, and proper mold design to ensure vermicular graphite formation.
Already used in engine blocks and cylinder heads, CGI reduces weight by up to 10% and improves thermal fatigue life by 30%.
Advances in simulation and process control are expanding its use to turbochargers, exhausts, і насоси.
With ongoing improvements in alloys and sustainable manufacturing, CGI is becoming a key material in modern, efficient engineering.
В Це, ми готові співпрацювати з вами у використанні цих передових методів для оптимізації дизайну ваших компонентів, вибір матеріалів, і виробничі робочі процеси.
гарантуючи, що ваш наступний проект перевищить усі показники продуктивності та стійкості.
Поширені запитання
Why is sand casting used for CGI?
Sand casting is cost-effective for complex, large, and medium-to-high volume parts.
It accommodates CGI’s specific thermal and mechanical properties, especially in automotive and industrial components.
What are common applications of CGI sand castings?
Typical applications include diesel engine blocks, головки циліндрів, гальмові компоненти,
turbocharger housings, and structural machine parts—where strength and thermal stability are critical.
What are the key advantages of Sand Casting Compacted Graphite Iron?
CGI provides excellent strength-to-weight ratio, improved fatigue resistance, better heat dissipation, and lower cost than ductile iron in similar roles.
How does CGI affect machinability?
CGI is moderately machinable—harder and more abrasive than gray iron but easier than ductile iron. Advanced tooling and cutting strategies are recommended.
Is CGI suitable for high-temperature applications?
Так. Its microstructure resists thermal fatigue and distortion, making it well-suited for components exposed to cyclic thermal loads, such as exhaust manifolds and cylinder heads.



