1. Вступ
В останні роки, the quest for lightweight, довговічний, and cost-effective components has intensified.
Aerospace engineers seek turbine blades that withstand 1,400°C combustion temperatures;
automotive designers push engine blocks to handle 200MPa peak cylinder pressures; orthopedic surgeons demand titanium implants that endure 10⁷ loading cycles without failure.
Amid these challenges, the debate rages: Are CNC-machined parts inherently stronger than cast parts?
To answer this, we must first clarify what “strength” entails—tensile and yield values, втома життя,
Вплив міцність, and wear resistance—then compare how CNC machining and various casting methods measure up across these criteria.
Зрештою, the most robust solution often lies in a tailored combination of processes, матеріали, and post-treatments.
2. CNC Machining Metal
ЧПУ (Комп'ютерний числовий контроль) обробка є a subtractive manufacturing process, meaning it removes material from a solid workpiece—usually a wrought metal billet—to produce a precisely defined final geometry.
The process is controlled by computer programs that dictate tool paths, speeds, and feeds, enabling the consistent production of high-accuracy parts.

Subtractive Process: From Billet to Finished Part
The typical workflow begins with selecting a wrought billet of metal such as 7075 алюміній, 316 нержавіюча сталь, або Ti-6Al-4V titanium.
The billet is then clamped into a CNC mill or lathe, де rotating cutting tools або turning inserts systematically remove material along programmed axes.
The result is a finished part with exceptionally tight dimensional tolerances, high surface quality, і mechanically robust properties.
Типові матеріали: Wrought Alloys
- Алюмінієві сплави: Напр., 6061-T6, 7075‑T6 – known for light weight, обробка, and strength-to-weight ratio.
- Сталеві сплави: Напр., 1045, 4140, 316, 17-4PH – offering superior mechanical strength and wear resistance.
- Титанові сплави: Напр., Ti-6Al-4V – valued for corrosion resistance, біосумісність, and high strength-to-weight performance.
- Other Metals: Латунь, мідь, магній, Юнель, and more can also be CNC-machined for specialized applications.
Основні особливості
- Розмірна точність: ±0.005 mm or better with advanced multi-axis CNC machines.
- Поверхнева обробка: As-machined finishes typically achieve РА 0,4-1,6 мкм, with further polishing reaching Рак < 0.2 мкм.
- Повторюваність: Ideal for both low and medium batch production with minimal variation.
- Tool Flexibility: Supports milling, свердління, обертання, нудний, різьблення, and engraving in one setup on 5-axis machines.
Pros of CNC Machining
- Superior Mechanical Strength:
Parts retain the fine-grain structure of wrought metals, typically showing 20–40% higher strength than cast counterparts. - High Precision and Tolerance Control:
CNC machining can meet tolerances as tight as ±0,001 мм, essential for aerospace, медичний, and optical components. - Excellent Surface Integrity:
Гладкий, uniform surfaces with low roughness improve fatigue resistance, продуктивність герметизації, та естетика. - Універсальність матеріалу:
Compatible with virtually all industrial metals, from soft aluminum to hard superalloys like Inconel and Hastelloy. - Rapid Prototyping and Customization:
Ideal for small to medium batches, iterative design testing, and unique part geometries without expensive tooling. - Minimal Internal Defects:
Machined parts are generally free from porosity, порожнини усадки, or inclusions—common issues in casting.
Cons of CNC Machining
- Матеріальні відходи:
Being subtractive, CNC machining often results in 50–80% material loss, especially for complex geometries. - High Cost for Large Production Runs:
Per-unit costs remain high without economies of scale, and extensive tool wear may further increase operational expenses. - Longer Cycle Times for Complex Parts:
Intricate geometries requiring multiple setups or tools may significantly increase machining time. - Limited Internal Complexity:
Internal passages and undercuts are difficult to achieve without special fixtures, and often require EDM or modular designs. - Requires Skilled Programming and Setup:
Precision programming and tooling strategies are essential to achieve optimal efficiency and part quality.
3. Metal Casting
Metal casting remains one of the oldest and most versatile manufacturing methods, enabling the economical production of parts that range from a few grams to multiple tons.
By pouring molten metal into molds—either single‑use or reusable—casting delivers near‑net shapes, complex internal features, and large cross‑sections that would be difficult or prohibitively expensive to machine from solid billets.
Overview of Common Casting Methods
1. Пісочний кастинг
- Обробка: Pack sand around a pattern, remove the pattern, and pour metal into the resulting cavity.
- Typical Volumes: 10–10,000 units per pattern.
- Допуски: ± 0.5–1.5 mm.
- Шорсткість поверхні: РА 6–12 мкм.
2. Інвестиційне кастинг (Lost‑Wax)
- Обробка: Create a wax pattern, coat it in ceramic slurry, melt out the wax, then pour metal into the ceramic mold.
- Typical Volumes: 100–20,000 units per mold.
- Допуски: ± 0.1–0.3 mm.
- Шорсткість поверхні: РА 0,8-3,2 мкм.

3. Кастинг
- Обробка: Inject molten non‑ferrous metal (алюміній, цинк) into high‑precision steel dies under high pressure.
- Typical Volumes: 10,000–1,000,000+ units per die.
- Допуски: ± 0.05–0.2 mm.
- Шорсткість поверхні: РА 0,8-3,2 мкм.
4. Lost‑Foam Casting
- Обробка: Replace sand patterns with expanded polystyrene foam; the foam vaporizes upon metal contact.
- Typical Volumes: 100–5,000 units per pattern.
- Допуски: ± 0.3–0.8 mm.
- Шорсткість поверхні: Ra 3.2–6.3 µm.
5. Постійне лиття цвілі
- Обробка: Reusable metal molds (often steel) are filled by gravity or low pressure, then cooled and opened.
- Typical Volumes: 1,000–50,000 units per mold.
- Допуски: ± 0.1–0.5 mm.
- Шорсткість поверхні: Ra 3.2–6.3 µm.
Typical Casting Materials
1. Cast Irons (Сірий, Герцоги, Білий)
- Заявки: блоки двигуна, насосні корпуси, машинні бази.
- Характеристики: high damping, compressive strength up to 800 MPA, moderate tensile strength (200–400 MPa).
2. Кадати Steels
- Заявки: Судна тиску, Важкі компоненти техніки.
- Характеристики: tensile strength 400–700 MPa, toughness up to 100 MPa·√m after heat treatment.
3. Алюміній Cast Alloys (A356, A319, тощо)
- Заявки: automotive wheels, aerospace structural parts.
- Характеристики: tensile strength 250–350 MPa, density ~2.7 g/cm³, Хороша резистентність до корозії.
4. Мідь, Магній, цинкові сплави
- Заявки: електричні роз'єми, aerospace fittings, декоративне обладнання.
- Характеристики: Відмінна провідність (мідь), низька щільність (магній), tight tolerance capability (цинк).
Key Features of Casting
- Near‑Net Shape Capability: Minimizes machining and material waste.
- Комплексна геометрія: Easily produces internal cavities, ребра, підрізування, and bosses.
- Масштабованість: З a few hundred до millions of parts, depending on method.
- Large Part Production: Capable of casting components weighing several tons.
- Alloy Flexibility: Allows specialized compositions not readily available in wrought form.
Pros of Metal Casting
- Cost‑Effective Tooling for High Volumes: Die casting amortizes tooling over hundreds of thousands of parts, reducing per‑piece cost by up to 70% compared to CNC.
- Свобода дизайну: Intricate internal passages and thin walls (as low as 2 mm in investment casting) are possible.
- Material Savings: Near‑net shapes reduce scrap, especially in large or complex parts.
- Size Versatility: Produces very large parts (Напр., marine engine blocks) that are impractical to machine.
- Rapid Batch Production: Die-cast parts can cycle every 15–45 seconds, meeting high-volume demands.
Cons of Metal Casting
- Inferior Mechanical Properties: As‑cast microstructures—dendritic grains and porosity—yield tensile strengths 20–40% lower and fatigue lives 50–80% shorter than wrought/CNC counterparts.
- Surface and Dimensional Limitations: Coarser finishes (Ra 3–12 µm) and looser tolerances (± 0.1–1.5 mm) often necessitate secondary machining.
- Potential for Casting Defects: Shrinkage voids, gas porosity, and inclusions can act as crack initiation sites.
- High Initial Tooling Cost for Precision Molds: Investment casting and die casting molds can exceed US $50,000–$200,000, requiring high volumes to justify expense.
- Longer Lead Times for Tooling Fabrication: Designing, виробництво, and validating complex molds can take 6–16 weeks before first parts are produced.
4. Material Microstructure and Its Influence on Strength
The microstructure of a metal—its grain size, форму, and defect population—fundamentally governs its mechanical performance.
Wrought vs. As‑Cast Grain Structures
Wrought alloys undergo hot or cold deformation followed by controlled cooling, producing штраф, equiaxed grains often on the order of 5–20 µm in diameter.
Навпаки, as‑cast alloys solidify in a thermal gradient, формування dendritic arms і segregation channels with average grain sizes of 50–200 мкм.
- Impact on Strength: According to the Hall–Petch relationship, halving grain size can boost yield strength by 10–15%.
Наприклад, wrought 7075‑T6 aluminum (grain size ~10 µm) typically achieves a yield strength of 503 MPA, whereas cast A356‑T6 aluminum (grain size ~100 µm) peaks around 240 MPA.
Пористість, Включення, and Defects
Casting processes can introduce 0.5–2% volumetric porosity, along with oxide or slag inclusions.
These microscale voids act as stress concentrators, drastically reducing fatigue life and fracture toughness.
- Fatigue Example: A cast aluminum alloy with 1% porosity may see a 70–80% shorter fatigue life under cyclic loading compared to its wrought counterpart.
- В'язкість до руйнування: Wrought 316 stainless steel often exhibits K_IC values above 100 MPa·√m, while sand‑cast 316 SS may only reach 40–60 MPa·√m.
Heat Treatment and Work‑Hardening
CNC‑machined components can leverage advanced heat treatments—гасіння, загартовування, або precipitation hardening—to tailor microstructures and maximize strength and toughness.
Наприклад, solution‑treated and aged Ti‑6Al‑4V can reach tensile strengths above 900 MPA.
By comparison, cast parts typically receive homogenization to reduce chemical segregation, and sometimes solution treatment,
but they cannot attain the same uniform precipitation microstructure as wrought alloys.
Як результат, cast superalloys may achieve tensile strengths of 600–700 МПа post‑treatment, solid but still below wrought equivalents.
Work‑Hardening and Surface Treatments
Крім того, CNC machining itself can introduce beneficial compressive residual stresses on critical surfaces,
particularly when combined with shot‑peening, which improves fatigue resistance by up to 30%.
Casting lacks this mechanical work‑hardening effect unless subsequent treatments (Напр., cold rolling or peening) are applied.
5. Mechanical Properties Comparison
To determine whether CNC-machined components are stronger than cast ones, a direct comparison of their механічні властивості—including tensile strength, втома, and impact toughness—is essential.
While material choice and design both play a role, the manufacturing process itself significantly affects the final performance of the part.
Наклад і сили врожаю
Сила на розрив measures the maximum stress a material can withstand while being stretched or pulled before breaking, в той час Похідна сила indicates the point at which permanent deformation begins.
CNC-machined parts are typically made from wrought alloys, which exhibit refined microstructures due to mechanical working and thermomechanical processing.
- Wrought Aluminum 7075-T6 (CNC Machined):
-
- Похідна сила: 503 MPA
- Кінцева міцність на розрив (UTS): 572 MPA

- Cast Aluminum A356-T6 (Heat Treated):
-
- Похідна сила: 240 MPA
- UTS: 275 MPA

Аналогічно, wrought titanium (TI-6AL-4V) processed via CNC machining may reach a UTS of 900–950 MPa,
whereas its cast version typically tops out around 700–750 MPa due to the presence of porosity and a less refined microstructure.
Висновок: CNC-machined components from wrought materials typically offer 30–50% higher yield and tensile strength than their cast counterparts.
Fatigue Life and Endurance Limit
Fatigue performance is critical in aerospace, медичний, and automotive parts subjected to cyclic loading.
Пористість, включення, and surface roughness in cast parts severely reduce fatigue resistance.
- Wrought Steel (ЧПУ): Endurance limit ~ 50% of UTS
- Cast Steel: Endurance limit ~ 30–35% of UTS
Наприклад, in AISI 1045:
- CNC-Machined (wrought): Endurance limit ~ 310 MPA
- Cast equivalent: Endurance limit ~ 190 MPA
CNC machining also provides smoother surfaces (Ra 0.2–0.8 μm), which delays crack initiation. Навпаки, as-cast surfaces (РА 3-6 мкм) can act as initiation sites, accelerating failure.
Impact Toughness and Fracture Resistance
Impact toughness quantifies a material’s ability to absorb energy during sudden impacts, and is especially important for parts in crash-prone or high-strain environments.
Cast metals often contain microvoids or shrinkage cavities, reducing their energy absorption capacity.
- Wrought Steel (Charpy V-notch at room temp):>80 J
- Cast Steel (same conditions):<45 J
Even after heat treatment, castings rarely reach the fracture toughness values of wrought products due to persistent internal flaws and anisotropic structures.
Твердість і зносостійкість
While casting allows for surface hardening treatments like case hardening або induction hardening,
CNC-machined parts often benefit from work hardening, precipitation treatments, або азотування, yielding consistent surface hardness across the part.
- CNC-machined 17-4PH stainless steel: до HRC 44
- Cast 17-4PH (aged): типово HRC 30–36
When surface integrity is critical—for example, in bearing housings, форми, or rotating shafts—CNC machining provides a superior, more predictable wear profile.
6. Residual Stress and Anisotropy
When comparing CNC-machined and cast components, evaluating залишковий стрес і anisotropy is vital to understanding how each manufacturing process influences structural integrity, стабільність розмірів, і довгострокову продуктивність.
These two factors, though often less discussed than tensile strength or fatigue life,
can significantly affect a component’s behavior under real-world operating conditions, particularly in high-precision applications like aerospace, Медичні пристрої, and automotive powertrains.
Залишкова напруга: Origins and Effects
Residual stress refers to the internal stresses retained in a component after manufacturing, even when no external forces are applied.
These stresses may lead to warping, розтріскування, or premature failure if not properly managed.
▸ CNC-Machined Components
Обробка ЧПУ, being a subtractive process, can induce mechanical and thermal stresses primarily near the surface. These residual stresses arise from:
- Cutting forces and tool pressure, especially during high-speed or deep-pass operations
- Localized thermal gradients, caused by frictional heat between the cutting tool and material
- Interrupted cuts, which can create uneven stress zones around holes or sharp transitions
While machining-induced residual stresses are generally shallow and localized, they can influence розмірна точність, especially in thin-walled or high-precision parts.
Однак, CNC machining from wrought materials, which already undergo extensive processing to refine grain structures and relieve internal stresses,
tends to result in more stable and predictable residual stress profiles.
Data Point: In aerospace-grade aluminum (7075-T6), residual stresses introduced during CNC machining are typically within ±100 MPa near the surface.
▸ Cast Components
У кастингу, residual stresses originate from non-uniform solidification і cooling contraction, especially in complex geometries or thick-walled sections.
These thermally induced stresses often extend deeper into the part and are harder to control without additional post-processing.
- Differential cooling rates create tensile stresses in the core і compressive stresses at the surface
- Shrinkage cavities and porosity can act as stress risers
- Residual stress levels depend on mold design, alloy type, and cooling conditions
Data Point: In cast steels, residual stresses can exceed ±200 MPa, especially in large castings that have not undergone stress-relief heat treatment.
Summary Comparison:
| Аспект | CNC-Machined | Кадати |
|---|---|---|
| Origin of Stress | Cutting forces, localized heating | Thermal contraction during cooling |
| Depth | Shallow (surface-level) | Deep (volumetric) |
| Predictability | Високий (especially in wrought alloys) | Низький (requires stress-relief processes) |
| Typical Stress Range | ±50–100 MPa | ±150–200 MPa or more |
Анізотропія: Directional Properties of Materials
Анізотропія refers to the variation of material properties in different directions, which can significantly affect mechanical performance in load-bearing applications.
▸ CNC-Machined (Wrought) Матеріали
Wrought alloys—used as the base stock for CNC machining—undergo прокатки, екструзія, або кування, в результаті чого a refined and directionally consistent grain structure.
While some mild anisotropies may exist, the material properties are generally more uniform and predictable across different directions.
- High degree of isotropy in machined parts, especially after multi-axis milling
- More consistent mechanical behavior under complex loading conditions
- Controlled grain flow can enhance properties in the desired direction
Приклад: In forged titanium alloy (TI-6AL-4V), the tensile strength varies by less than 10% between longitudinal and transverse directions after CNC machining.
▸ Cast Materials
Навпаки, cast metals solidify from a molten state, often resulting in directional grain growth і dendritic structures aligned with heat flow.
This causes inherent anisotropy and potential weakness in off-axis loading conditions.
- Greater variability in tensile, втома, and impact properties across different directions
- Grain boundary segregation and inclusion alignment further reduce uniformity
- Mechanical properties are less predictable, especially in large or complex castings
Приклад: In cast Inconel 718 Турбінні леза, tensile strength can differ by 20–30% between radial and axial orientations due to directional solidification.
7. Surface Integrity and Post‑Processing
Surface integrity and post-processing are essential considerations in determining the long-term performance, втома, and visual quality of manufactured components.
Whether a part is created through Обробка ЧПУ або кастинг, the final surface condition can influence not only aesthetics but also mechanical behavior under service conditions.
This section explores how surface integrity differs between CNC-machined and cast parts, the role of post-processing treatments, and their cumulative impact on functionality.
Surface Finish Comparison
Обробка ЧПУ:
- CNC machining typically produces parts with відмінна обробка поверхні, especially when fine tool paths and high spindle speeds are used.
- Common surface roughness (Рак) values for CNC:
-
- Standard finish: Ra ≈ 1.6–3.2 µm
- Precision finish: Ra ≈ 0.4–0.8 µm
- Ultra-fine finish (Напр., lapping, полірування): Ra ≈ 0.1–0.2 µm
- Smooth surfaces reduce stress concentrators, enhance fatigue life, and improve sealing properties, critical in hydraulic and aerospace applications.
Кастинг:
- As-cast surfaces are generally rougher and less consistent due to mold texture, metal flow, and solidification characteristics.
-
- Пісочний кастинг: Ra ≈ 6.3–25 µm
- Інвестиційне кастинг: Ra ≈ 3.2–6.3 µm
- Кастинг: Ra ≈ 1.6–3.2 µm
- Rough surfaces can harbor residual sand, масштаб, or oxides, which may degrade fatigue and corrosion resistance unless further finished.
Subsurface Integrity and Defects
Обробка ЧПУ:
- Machining from wrought billets often results in щільний, homogeneous surfaces with low porosity.
- Однак, aggressive cutting parameters can introduce:
-
- Micro-cracks or heat-affected zones (Хаз)
- Residual tensile stresses, which may reduce fatigue life
- Controlled machining and coolant optimization help maintain metallurgical stability.
Кастинг:
- Cast parts are more susceptible to subsurface defects, наприклад:
-
- Пористість, gas bubbles, and shrinkage cavities
- Включення (oxides, slag) і segregation zones
- These imperfections can act as initiation sites for cracks under cyclic loads or impact stresses.
Post-Processing Techniques
CNC Machined Parts:
- Depending on functional requirements, CNC parts may undergo additional treatments, наприклад:
-
- Анодування – improves corrosion resistance (common in aluminum)
- Polishing/lapping – enhances dimensional precision and surface finish
- Дробеструйне очищення – introduces beneficial compressive stresses to improve fatigue life
- Coating/plating (Напр., нікель, хром, or PVD) – enhances wear resistance
Cast Parts:
- Post-processing is often more extensive due to casting’s inherent surface roughness and internal defects.
-
- Surface grinding or machining for dimensional accuracy
- Hot Isostatic Pressing (Стегно) – used to eliminate porosity and increase density, especially for high-performance alloys (Напр., titanium and Inconel castings)
- Термічна обробка – improves microstructure uniformity and mechanical properties (Напр., T6 for aluminum castings)
Comparative Table – Surface and Post-Processing Metrics
| Аспект | Обробка ЧПУ | Metal Casting |
|---|---|---|
| Шорсткість поверхні (Рак) | 0.2–3.2 µm | 1.6–25 µm |
| Subsurface Defects | Rare, unless over-machined | Поширений: пористість, включення |
| Показники втоми | Високий (with proper finishing) | Помірний до низького (unless treated) |
| Typical Post-Processing | Анодування, полірування, покриття, дробеструйна обробка | Обробка, Стегно, термічна обробка, шліфування |
| Цілісність поверхні | Відмінний | Змінний, often needs improvement |
8. CNC vs. Кадати: A Comprehensive Comparison Table
| Категорія | Обробка ЧПУ | Кастинг |
|---|---|---|
| Метод виробництва | Subtractive: material is removed from solid billets | Additive: molten metal is poured into a mold and solidified |
| Тип матеріалу | Wrought metals (Напр., 7075 алюміній, 4140 сталь, TI-6AL-4V) | Cast alloys (Напр., A356 aluminum, чавун, low alloy cast steels) |
| Мікроструктура | Fine-grain, homogeneous, work-hardened | Dendritic, coarse grain, пористість, potential shrinkage defects |
Сила на розрив |
Вищий (Напр., 7075-T6: ~503 MPa, TI-6AL-4V: ~895 MPa) | Опускатися (Напр., A356-T6: ~275 MPa, grey cast iron: ~200–400 MPa) |
| Втома | Superior due to cleaner microstructure, absence of voids | Lower fatigue life due to porosity and surface roughness |
| Вплив & Жорсткість | Високий, especially in ductile alloys like forged steel or titanium | Brittle in many cast irons; variable in cast aluminum or steel |
Розмірна точність |
Very high precision (±0.01 mm), suitable for tight-tolerance components | Moderate accuracy (±0,1–0,3 мм), depends on process (пісок < загинути < інвестиційне кастинг) |
| Поверхнева обробка | Smooth finish (Ra 0.2–0.8 μm), post-processing optional | Rougher as-cast finish (РА 3-6 мкм), often requires secondary machining |
| Залишкова напруга | Possible cutting-induced stress, generally mitigated by finishing operations | Solidification and cooling induce residual stresses, possibly leading to warping or cracks |
Анізотропія |
Typically isotropic due to uniform rolled/fabricated billets | Often anisotropic due to directional solidification and grain growth |
| Гнучкість дизайну | Excellent for complex geometries with undercuts, канавки, and fine details | Best for producing complex hollow or net-shape parts without material waste |
| Придатність обсягу | Ideal for prototyping and low-volume production | Economical for high-volume, low-unit-cost manufacturing |
| Вартість інструментів | Low initial setup; quick iteration | High upfront tooling/mold cost (especially die or investment casting) |
Час |
Fast setup, rapid turnaround | Longer lead times for mold design, approval, and casting execution |
| Post-Processing Needs | Мінімальний; optional polishing, покриття, or hardening | Often required: обробка, peening, термічна обробка |
| Ефективність витрат | Cost-effective in small batches or for precision parts | Economical in large-scale production due to amortized tooling |
| Застосування Fit | Аерокосмічний, медичний, захист, custom prototypes | Автомобільний, construction equipment, насос, клапани, блоки двигуна |
| Strength Verdict | Stronger, more consistent – ideal for structural integrity and fatigue-critical components | Weaker in comparison – suitable where strength demands are moderate or cost is a major driver |
9. Висновок: ЧПУ сильніший за актор?
Так, CNC-machined components are generally stronger than cast parts—particularly in terms of tensile strength, втома життя, and dimensional precision.
This strength advantage arises primarily from the refined microstructure of wrought metals і precision of machining.
Однак, the right choice depends on the specific додаток, обсяг, design complexity, і бюджет.
For safety-critical, load-bearing, or fatigue-sensitive components, CNC is the preferred solution.
But for large-scale, geometrically complex parts with less demanding mechanical loads, casting offers unmatched efficiency.
The most innovative manufacturers are now combining both: near-net casting followed by CNC finishing—a hybrid strategy that merges economy with performance in the era of smart, high-performance manufacturing.
Це is the perfect choice for your manufacturing needs if you need high-quality CNC machining or casting products.



