1. Извршни сажетак
Инвестициони ливење (lost-wax casting) is prized for shape accuracy, thin sections and complex geometry.
The choice of alloy is the single most important design decision because it determines: which materials and melting/degassing practices the foundry must use; the shell chemistry and firing cycles;
feeding and shrinkage strategy; achievable mechanical properties and required post-casting heat treatments; inspection and acceptance tests; and ultimately part cost and lead time.
This article examines the principal families of alloys commonly cast by the investment process, compares their metallurgical behaviors and processing implications, and provides pragmatic selection guidance tied to typical applications.
2. Why material selection matters in investment casting
Material selection is the single most consequential engineering decision in Инвестициони ливење. It determines not only the in-service performance of the finished part (снага, отпорност на корозију, стабилност на високим температурама, биокомпатибилност, тежина),
but also the entire upstream and downstream manufacturing chain: melting and pouring method, shell chemistry and firing, gating/riser strategy, defect modes to watch for, required heat treatments, методе инспекције, време циклуса, scrap risk and total cost.

3. Material families used in investment casting
| Породица | Уобичајене оцене / примери | Typical density (г·цм⁻³) | Топљење / течност (° Ц) | Снага & niche |
| Аустенитни нехрђајући челик | 304, 316Л, ЦФ3, ЦФ3М | 7.9 | ~1,400–1,450 | Отпорност на корозију, ease of casting |
| Precipitation-hardening stainless | 17-4 ПХ (Аиси 630) | 7.8 | ~1,350–1,420 | High strength after aging |
| Дуплекс / Super-duplex | 2205, 2507 | ~ 7.8 | ~1,350–1,450 | Велика снага + отпорност на питтинг |
| Мартензитни нехрђајући / челици алата | 410/420, Х13, 440Ц | 7.7–7.9 | 1,300–1,450 (варира) | Носити, отпорност на топлоту (алат за алате) |
| Угљеник / Стеелс ниски легури | 1020–4140, ВЦБ | 7.8 | ~1,420–1,540 | Структурални, нижи трошак |
Nickel-base superalloys |
Уносилац 718, 625, 738 | 8.2–8.4 | 1,350–1,400 (718), liquidus up to ~1,400–1,450+ | Снага високог температура, пузати |
| Cobalt-base alloys | Co-Cr-Mo (ASTM F75) | ~8.3–8.9 | ~1,260–1,350 | Носити, biomedical implants |
| Copper-base alloys (bronze/brass) | Алуминијумска бронза, Са-Сн, Са нама | 8.4-8.9 | 900–1,080 | Проводљивост, носиве површине |
| Легуре титанијума | ТИ-6АЛ-4В | 4.4 | melting ~1,650 | High strength-to-weight, биокомпатибилан |
| Легуре алуминијума | А356 (ограничена) | 2.7 | ~580–660 | Лаган, low strength vs others |
| Племенити метали | 18K gold, sterling silver, Pt-alloys | Ау 19.3, Аг 10.5 | Au melt 1,064 | Накит, Електрични контакти |
4. Casting Alloy Materials — Determining the Final Performance of Castings
When selecting an alloy for a casting you must consider a set of interdependent factors: потребна механичка својства (снага, жилавост, умор), operating environment (температура, Корозивни медији),
геометрија (thin walls vs massive sections), доношење (флудност, freezing range, реактивност), post-cast processing (топлотни третман, Кук), inspection needs and cost.
Ferrous alloy castings
1) Carbon-steel одлив
What they are: low-alloy steels where carbon is the primary strengthening element (Нпр., AISI 1020–1045, АСТМ А216 ВЦБ, еквиваленти).
Својства & перформансе: умерене снаге, good toughness when normalized, excellent machinability and low cost. Density ~7.85 g/cm³.
Casting considerations: modest melting point (~1,420–1,540 °C), good fluidity for many geometries but susceptible to shrinkage porosity in heavy sections.
Shell and gating design must provide adequate feeding. Hydrogen and graphite formation can be concerns for some grades.
Накнадна обрада: нормализација, гасити & нарав (зависно од разреда) to achieve desired hardness/strength.
Апликације: Структурне компоненте, кућишта, general engineering castings where corrosion resistance is not critical.
2) Alloy-steel одлив
What they are: steels alloyed with Cr, Мо, У, У, итд., за побољшање снаге, hardenability and elevated-temperature properties (Нпр., 4140, 4340 family analogs).
Својства & перформансе: већа затезна чврстоћа, fatigue resistance and toughness than plain carbon steels; can be heat-treated to high strengths.
Casting considerations: higher sensitivity to segregation and hot-cracking as alloy content rises; careful gating and risering needed; some alloys require vacuum or deoxidized melts for soundness.
Накнадна обрада: critical quench/temper cycles, control of distortion during heat treatment. May require stress relief and tempering to balance properties.
Апликације: зупчаници, шахтови, high-stressed structural parts, oil-field components.
3) Нерђајући челик одлив
What they are: iron-based alloys with ≥10.5% Cr; families include austenitic (304/316/ЦФ8/ЦФ8М), мартензитна (410/420), дуплекс (2205) и падавина-отврдњавање (17-4 ПХ).
Својства & перформансе: corrosion resistance ranges from general (austenitics) to high chloride resistance (дуплекс/супердуплекс);
mechanical properties vary widely — duplex offers high strength + Добра отпорност на корозију; 17-4 PH offers high strength after aging.

Casting considerations: stainless melts form oxide/slag; control of melt chemistry, deoxidation and inclusion removal matters for surface finish and mechanical properties.
Solidification shrinkage and hot tear susceptibility differ across grades.
Накнадна обрада: Решење Аннеал, quench and aging (for PH grades); duplex may require careful heat treatment to keep phase balance. Passivation and pickling often follow machining.
Апликације: chemical plant components, вентили, марински хардвер, sanitary parts, прерада хране, Медицински уређаји.
Non-ferrous alloy castings
4) Aluminum-alloy одлив
What they are: Ал-Да, Al-Cu and Al-Mg families (Нпр., А356, А357, АДЦ12, 6061-уписати) for cast components.
Својства & перформансе: ниске густине (~ 2.7 г / цм³), good specific strength (after heat treat for some alloys), excellent corrosion resistance when alloyed properly; одлична топлотна/електрична проводљивост.
Casting considerations: very good fluidity enables thin walls and fine detail, but hydrogen porosity, oxide films and hot tearing in certain conformations are key risks.
Shell firing temperatures and dewax schedules differ from ferrous work. Hydrogen control, melt cleanliness and proper gating are essential.
Накнадна обрада: solution heat treatment and artificial aging (Т6) за снагу; sometimes HIP for critical aerospace parts.
Апликације: Ваздухопловне кућишта, automotive lightweight components, heat-dissipating parts.
5) Бакар-base alloys (бронза, месинга, Алуминијум Бронза)
What they are: Са-Сн (бронза), Цу-Зн (месинга), Са (Алуминијум Бронза), Са нама, и варијанте.
Својства & перформансе: Одлична отпорност на корозију (especially Cu-Ni/Al-bronze), good bearing properties and thermal/electrical conductivity. Density ~8.4–8.9 g/cm³.

Casting considerations: lower melting points than steels; high thermal conductivity affects solidification behavior (fast cooling).
Good fluidity makes fine detail feasible. Shrinkage and hot cracking risk depend on alloy composition.
Накнадна обрада: annealing for ductility, machining is often difficult (радно каљење); surface finishing and dezincification concerns for brasses exposed to certain environments.
Апликације: марински хардвер, компоненте пумпе, лежајеви, decorative and electrical parts.
6) Титанијум-alloy castings
What they are: principally Ti-6Al-4V and other Ti alloys offering high specific strength and biocompatibility.
Својства & перформансе: excellent strength-to-weight, corrosion resistance and biocompatibility; ниске густине (~4.4 g/cm³).

Casting considerations: highly reactive melt (кисеоник, nitrogen pickup) — vacuum/argon melting and pour required to avoid embrittlement and inclusions.
Solidification shrinkage and oxide formation demand specialized shell materials and melting practices. Production costs and equipment requirements are high.
Накнадна обрада: vacuum heat treatment, ослобађање од стреса, HIP common to close porosity for critical components. Surface finishing is important for fatigue-sensitive parts.
Апликације: aerospace structural components, Медицински имплантати, high-performance sporting goods.
High-temperature alloy castings
7) Nickel-base superalloys
What they are: Ni-Cr-Co-Al-Ti based alloys (Уносилац, Рене, Nimonic families) designed for strength and creep resistance at elevated temperatures (up to ~1,000 °C and beyond for some alloys).
Својства & перформансе: excellent creep strength, oxidation and corrosion resistance at high temperature; density around 8.2–8.5 g/cm³.

Casting considerations: long solidification ranges promote segregation and shrinkage defects; вакуумско индукционо топљење, strict de-gassing and inclusion control are critical.
Directional solidification and single-crystal casting are specialized variants for turbine blades (different process chain).
Накнадна обрада: complex solution and aging heat treatments to develop γ′ precipitates; HIP and machining are common. Certification for aerospace sectors requires tight NDT.
Апликације: gas-turbine hot-section parts, ваздухопловство, генерација електричне енергије, high-temperature chemical processing.
8) Cobalt-base alloys
What they are: Co-Cr-Mo and related compositions used where wear and elevated-temperature strength are required (Нпр., stellite family).
Својства & перформансе: good hot hardness, wear resistance and corrosion resistance. Often used where sliding wear at elevated temperature is present.
Casting considerations: high melting points and sensitivity to segregation; machining is challenging due to high hardness.
Накнадна обрада: solution/aging (where applicable), grinding and polishing for tribological surfaces.
Апликације: turbine seals, Седишта вентила, biomedical dental alloys (Цо-цр), Носите компоненте.
9) Iron-based high-temperature alloys
What they are: heat-resisting irons (Нпр., Fe-Cr-Al, stainless steels formulated for elevated temperature).
Својства & перформансе: cost-effective at moderate high temperatures, good oxidation resistance with suitable alloying.
Casting considerations & апликације: used where temperatures are high but extreme creep resistance of nickel alloys is not required (Нпр., Делови пећи, some industrial burners).
Special-purpose alloy castings
Precious-metal alloys (злато, сребрна, платина)
What they are: Ау, Ag and Pt alloys for jewelry, precision contacts and catalytic uses.
Својства & перформансе: excellent corrosion resistance and aesthetic properties; variable mechanical strength depending on karat and alloying.
Casting considerations: ниске тачке топљења (gold ~1,064 °C), Одлична флуидност; vacuum or controlled atmosphere casting improves surface finish.
Инвестициони ливење (изгубљени восак) is the dominant manufacturing route for jewelry.
Апликације: накит, electronics contacts, decorative and specialty chemical uses.
Magnetic alloys (Al-Ni-Co, Nd-Fe-B variants)
What they are: permanent-magnet materials and soft magnetic alloys; напомена: many high-energy magnets (Nd-Fe-B) are not commonly made by investment casting because powder and consolidation processes are typical. Al-Ni-Co can be cast.
Својства & перформансе: magnetic coercivity, flux density and temperature stability determine suitability.
Casting considerations: magnetic alloys require controlled solidification to avoid unwanted phases; post-magnetization processing required.
Апликације: сензори, мотори, инструментација.
Shape-memory alloys (Ni-Ti / Nitinol)
What they are: near-equiatomic nickel-titanium alloys with shape-memory and superelastic behavior.
Својства & перформансе: reversible martensitic transformations produce large recoverable strains; used in actuators and medical devices.
Casting considerations: Ni-Ti is reactive and sensitive to composition; vacuum melting and precision control of Ni/Ti ratio are critical;
often produced via investment casting for complex geometries but powder-metallurgy and C-shape components are common. Post-cast heat treatment tailors transformation temperatures.
Апликације: Медицински уређаји (стентови, staples), actuators and adaptive structures.
5. Закључци
Material choice is the single most influential decision in investment casting.
It governs not only the in-service performance of a part (снага, умор, корозија, температурна способност, биокомпатибилност, маса)
but also every practical aspect of manufacture: melting method, shell chemistry and firing, gating and feeding strategy, likely defect modes, required heat treatment and NDT, cost and lead time.
Кључ, actionable conclusions:
- Start with function, not habit. Define the dominating service drivers (температура, корозија, носити, живот замора, тежина, regulatory constraints)
and let those map you to a material family (Нпр., nickel alloys for high-temperature creep, titanium for strength-to-weight and biocompatibility, duplex stainless for chloride service, bronzes for marine wear, precious metals for jewelry/electrical contacts). - Match foundry capability to alloy demand. Many alloys (титанијум, суперлегура, легуре кобалта) require vacuum or inert melting, Кук, and advanced NDT.
Don’t specify an special alloy unless a qualified supplier can deliver and certify it. - Design and process are co-dependent. Alloy attributes (опсег топљења, флудност, скупљање, реактивност, segregation tendency, топлотна проводљивост) must be used to set tooling compensation, gating/riser design, shell system and dewax/firing schedules.
Early simulation and pilot castings materially reduce risk. - Plan post-casting steps up front. Топлотни третман, Кук, surface finishing and machining affect dimension control and cost.
За критичне компоненте, specify these steps in the RFQ (and include acceptance tests and traceability). - Control quality by specification. Require MTRs, heat-treatment records, defined NDT regimes (radiography/CT for internal porosity, ultrasonic for thick ferrous sections, dye-penetrant for surfaces), and a clearly stated acceptance standard.
Define limits for porosity, inclusions and mechanical properties. - Balance cost, schedule and risk. Special alloys and stringent acceptance protocols increase lead time and cost.
Use the simplest alloy that satisfies functional requirements and qualify alternatives where feasible.
Често постављана питања
Can any metal be investment cast?
Many metals and alloys are suitable (челика, нерђајући, суперлегура никла и кобалта, легуре бакра, алуминијум, титанијум, племенити метали).
Међутим, suitability depends on foundry capability: reactive metals (титанијум, магнезијум) and high-melting superalloys require vacuum/inert melting and special shell systems.
Some magnet and powder-metallurgy alloys are not practical by conventional investment casting.
How do I choose between alloys when several meet performance needs?
Rank requirements (must-have vs desirable), then evaluate manufacturability (foundry capability, need for HIP or vacuum melt), трошак, lead time and inspection burden.
Pilot castings and life-cycle cost analysis help select the optimal trade-off.
Do all alloys need special shell materials or coatings?
Some do. Reactive or high-temperature melts (Нпр., титанијум, certain superalloys) may require inert face coats (циркон, глинице) and controlled firing to prevent metal-shell reactions.
Discuss shell formulation with your foundry during design.
How does alloy choice affect surface finish and machinability?
Metals like copper alloys and aluminium typically provide excellent surface finish and machinability; nickel and cobalt alloys are harder to machine and may require specialized tooling.
Stainless steels vary—duplex and PH grades machine differently than austenitics. Include machining allowance and tooling considerations in the design.
What about corrosion and environmental compatibility?
Corrosion performance is primarily a function of alloy chemistry and post-casting treatment (топлотна обрада, пасивација, премазивање).
For aggressive media (хлориди, киселине), select corrosion-resistant alloys (дуплекс нерђајући, Легуре никла) and require relevant qualification tests (прикудан, СЦЦ).
Environmental regulations (Нпр., РоХС, restricted elements) can also affect alloy choice.
How much more does a superalloy casting cost vs a steel casting?
Costs vary widely by alloy, complexity and post-processing.
Superalloys and reactive metals commonly cost several times more than common steels due to expensive feedstock, vacuum furnaces, Кук, and extended NDT.
Use total cost-of-ownership (материјал + прерада + инспекција + принос) rather than raw melt price alone.



