Sand Casting Compacted Graphite Iron Pump

Қабатталған сығылған графит темір дегеніміз не?

Мазмұн көрсету

1. Кіріспе

Sand casting has powered the iron foundry industry for centuries, enabling the production of complex geometries at relatively low cost.

Recently, Compacted Graphite Iron (CGI)—also known as vermicular graphite iron—has emerged as a material bridging the gap between traditional gray cast iron and ductile iron.

By combining desirable properties of both, CGI offers higher tensile strength and thermal conductivity than gray iron, yet retains superior castability and damping compared to ductile grades.

Бұл мақалада, we examine “what is sand casting with CGI? through metallurgical, ұқсату, механикалық, and economic lenses.

We aim to present a comprehensive yet practical resource for foundry engineers, design professionals, and materials researchers interested in harnessing CGI’s benefits.

2. Compacted Graphite Iron (CGI): Metallurgy and Properties

Compacted (vermicular) graphite iron (CGI) occupies an intermediate position between gray iron and ductile iron:

its unique graphite morphology yields a combination of strength, қаттылық, and thermal properties not attainable in other cast irons.

Compacted Graphite Iron Exhaust manifold
Compacted Graphite Iron Exhaust Manifold

Graphite Morphologies: From Gray to Ductile to CGI

Graphite in cast iron appears in three primary morphologies. Each influences mechanical and thermal behavior:

  • Сұр темір: Flake graphite provides crack‐arresting behavior under vibration but limits tensile properties.
  • CGI: Vermicular graphite appears as short, compact “worms” (compactness factor ≥ 60 %), enhancing strength and conductivity while retaining acceptable damping.
  • Ішкі үтік: Graphite occurs as nearly perfect nodules; this maximizes ductility but reduces damping and thermal conduction compared to CGI.

Chemical Composition and Alloying Elements

Химиялық, CGI resembles ductile iron but requires tighter control of certain elements, especially magnesium and sulfur, to achieve the desired vermicular graphite form.

Typical target composition (EN-GJV-450-12) appears below:

Элемент Типтік ауқым (вт %) Рғының раты / Әсер
Көміртегі (Б) 3.4 - 3.8 Provides graphite-forming potential; excess C can lead to carbides.
Кремний (Жіне) 2.0 - 3.0 Графитті жауын-шашынды жақсартады; balances ferrite/pearlite ratio.
Марганец (М.на) 0.10 - 0.50 Controls sulfides and refines grain; excessive Mn ties up C, risking carbide formation.
Фосфор (Б) ≤ 0.20 Impurity; can increase fluidity but reduces toughness if > 0.10 %.
Күкірт (С) ≤ 0.01 Must be minimal to prevent MgS formation, which would inhibit vermicular graphite nucleation.
Магний (Мг)
0.03 - 0.06 Critical for vermicular graphite; too little Mg yields gray iron, too much produces spheroidal graphite (Ішкі үтік).
Cerium / Қайта (Ce) 0.005 - 0.015 Acts as a nodulizer/modifier—refines vermicular graphite and stabilizes it against over-inoculation or inconsistent cooling.
Мыс (Друг) 0.2 - 0.8 Күш пен қаттылықты арттырады; high Cu (> 1 %) can promote carbides.
Никель (-Да)
≤ 0.5 Improves toughness and corrosion resistance; often omitted for cost reasons unless specific performance is needed.
Молибден (Әзірлеу) ≤ 0.2 Inhibits carbide formation; helps maintain a ferritic–pearlitic matrix with uniform graphite distribution.
Үтік (Ақысу) Баланс Base metal; carries all alloying additions and determines overall metallic properties.

Key Points:

  • Maintaining Mg between 0.035 % жіне 0.055 % (± 0.005 %) маңызды; falling outside this window shifts graphite morphology.
  • Күкірт must remain extremely low (< 0.01 %)—even 0.015 % S can tie up Mg as MgS, preventing vermicular graphite formation.
  • Кремний levels above 2.5 % encourage graphite flake growth and a more ferritic matrix, improving thermal conductivity but potentially reducing strength if excessive.

Microstructure: Vermicular Graphite in a Ferritic/Pearlitic Matrix

The as‐cast microstructure of CGI depends on solidification rate, inoculation, and final heat treatment. Typical features include:

Microstructural Feature Түсіндірме Control Parameter
Vermicular Graphite Flakes Graphite flakes with rounded ends; aspect ratio ~ 2:1-4:1; compactness ≥ 60 %. Mg/RE content, inoculation intensity, cooling rate (0.5–2 °C/s)
Ferritic Matrix Predominantly α‐iron with minimal carbide; yields high thermal conductivity. Slow cooling or post‐cast normalization
Pearlitic Matrix Alternating lamellae of ferrite and cementite (~ 20–40 % көкжуар); increases strength and hardness. Faster cooling, moderate Cu/Mo additions
Carbides (Fe₃c, M₇C₃) Undesirable if present in significant volume; reduce ductility and machinability. Excess Si or overly rapid cooling; insufficient inoculation
Inoculation Particles Added ferrosilicon, ferro-barium-silicon, or rare-earth-based inoculants create nucleation sites for vermicular graphite. Type and amount of inoculant (0.6–1.0 kg/T)
  • Matrix Control: А ferritic matrix (≥ 60 % феррит) yields thermal conductivity of 40–45 W/m·K,
    сол екі арада ferrite–pearlite mixes (30 % - 40 % көкжуар) push yield strength to 250 - 300 МПа without excessive embrittlement.
  • Vermicular Graphite Nodule Count: Нысана 100 - 200 vermicular flakes/mm² in sections ~ 10 қалың. Lower counts reduce strength; higher counts risk transitioning to nodularity.

Механикалық қасиеттері (Күш, Stiffness, Қажу)

CGI’s mechanical properties combine strength, қаттылық, and moderate ductility. Representative values (EN-GJV-450-12, қалыпқа келтірілген) appear below:

Мүлік Типтік ауқым Comparative Benchmark
Созылу күші (&) 400 - 450 МПа ~ 50 % higher than gray iron (200 - 300 МПа)
Бергі күш (0.2 % есепкілеу) 250 - 300 МПа ~ 60 % higher than gray iron (120 - 200 МПа)
Үзіліс кезінде созылу (А %) 3 - 5 % Intermediate between gray iron (0 - 2 %) and ductile iron (10 - 18 %)
Серпімділік модулі (Е е) 170 - 180 Gpa ~ 50 % higher than gray iron (100 - 120 Gpa)
Қаттылық (Brinell HB) 110 - 200 Б (matrix‐dependent) Ferritic CGI: 110 - 130 Б; Pearlite CGI: 175 - 200 Б
Шаршау күші (Rotating Bending) 175 - 200 МПа ~ 20 - 30 % higher than gray iron (135 - 150 МПа)
Әсер ету қаттылық (Charpy V‐Notch @ 20 ° °) 6 - 10 Ж Better than gray iron (~ 4–5 J), below ductile iron (10-15 Дж)

Observations:

  • Биік Жас модуль (E ≈ 175 Gpa) leads to stiffer components—advantageous in engine blocks and structural parts requiring minimal deflection.
  • Fatigue resistance (≈ 200 МПа) makes CGI suitable for cyclical loads (E.Г., cylinder heads under thermal cycles).
  • Қаттылық can be tailored via matrix composition: pure ferritic CGI (~ 115 Б) excels in wear applications; pearlitic CGI (~ 180 Б) is chosen for higher strength needs.

Thermal Conductivity and Damping Capacity

CGI’s unique graphite form and matrix produce distinctive thermal and vibrational characteristics:

Мүлік CGI Range Салыстыру
Жылу өткізгіштік 40 - 45 М / м / Сұр темір: 30 - 35 М / м /; Ішкі үтік: 20 - 25 М / м /
Нақты жылу (20 ° °) ~ 460 Дж / кг Similar to other cast irons (~ 460 Дж / кг)
Жылу кеңеюі (20-100 ° C) 11.5 - 12.5 × 10⁻⁶ / ° C Slightly higher than gray iron (11.0 × 10⁻⁶ / ° C)
Damping Capacity (Log Decrement) 0.004 - 0.006 Сұр темір: ~ 0.010; Ішкі үтік: ~ 0.002
  • Жылу өткізгіштік: High conductivity (40 М / м /) accelerates heat dissipation from hot spots in engine blocks and turbocharger housings, reducing thermal fatigue risk.
  • Damping: CGI’s damping factor (0.004 - 0.006) absorbs vibrational energy better than ductile iron, aiding noise, діріл, and harshness (NVH) control—especially in diesel engines.
  • Жылу кеңеюінің коэффициенті: CGI’s expansion (≈ 11.5 × 10⁻⁶ / ° C) matches steel engine liners closely, minimizing thermal stresses at the liner/block interface.

3. Қабатталған сығылған графит темір дегеніміз не (CGI)?

Құмның құюы with compacted graphite iron (CGI) follows the same overall steps as conventional iron sand casting,

mold preparation, melting, құю, solidification, and cleaning—but modifies key parameters to produce CGI’s unique “vermicular” graphite morphology.

CGI Sand Casting Gearbox Housing
CGI Sand Casting Gearbox Housing

Defining the Process

Pattern and Mold Construction

  • Pattern Design: Foundries create patterns (often from wood, эпоксий, or aluminum) that include allowances for 3–6 % shrinkage typical of CGI alloys (solidus ~ 1 150 ° °, liquidus ~ 1 320 ° °).
  • Sand Selection: Standard silica‐sand molds (өткізгіштігі > 200, AFS grain fineness ~ 200) work well,
    but enhanced binders—phenolic–urethane or furan—help resist CGI’s higher pouring temperature (~ 1 350-1 420 ° °).
  • Cope and Drag Assembly: Technicians pack the drag around the lower half of the pattern, then remove the pattern and place cores (Қажет болса) before ramming the cope.
    Careful vent placement ensures gas escape when high‐temperature CGI fills the cavity.

Melting and Metal Treatment

  • Charge Composition: Typical melts use 70–80 % recycled scrap, 10-20 % pig iron or hot‐metal,
    and master alloys to fine-tune chemistry. Foundries aim for C 3.5 ± 0.1 %, Жіне 2.5 ± 0.2 %, and S < 0.01 %.
  • Magnesium and Rare-Earth Additions: Right before pouring, operators add 0.035–0.055 % Мг (alongside 0.005–0.015 % RE/Ce) in a covered ladle to form vermicular graphite rather than flakes or spheroids.
    They stir gently to distribute modifiers uniformly.
  • Inoculation and De-Oxidation: Foundries inoculate with ~ 0.6–1.0 kg/T of ferrosilicon or barium-silicon inoculant to provide graphite nucleation sites.
    Simultaneously, de-oxidants—such as FeSi—scavenge dissolved oxygen and minimize oxide inclusions.

Pouring and Mold Filling

  • Superheat Management: Pouring temperature for CGI sits around 1 350-1 420 ° ° (2 462–2 588 ° F), roughly 30–70 °C above the liquidus.
    This extra superheat ensures complete filling of thin wall sections (төмен 4 мм) but also increases the risk of sand erosion.
  • Gating Design: Foundries use a tapered sprue and generous runner cross-sections, sized for a Reynolds number (Re) -ден 2 000–3 000—to minimize turbulence.
    Ceramic foam filters (30–40 ppi) often intercept any inclusions carried into the mold.
  • Mold Venting: Because CGI fluidity rivals gray iron, proper venting—through bottom vents under risers and controlled permeability—prevents gas entrapment.
    Specialized risers (exothermic or insulated) feed molten metal into the last-to-solidify hot spots.

Solidification and Microstructure Control

  • Graphite Nucleation: As the molten CGI cools from ~ 1 350 ° C 900 ° °, vermicular graphite nucleates on inoculant sites.
    Foundries target a cooling rate of 0.5–2.0 °C/s in sections between 10–15 mm thick to develop 100–200 vermicular flakes per mm².
  • Matrix Formation: Астында 900 ° °, the austenite-to-ferrite transition begins.
    Rapid cooling yields more pearlite (higher strength but lower thermal conductivity), while moderate cooling produces a primarily ferritic matrix (better heat dissipation).
    Foundries often normalize at 900 °C after shakeout to achieve a 60 % ferrite–40 % pearlite balance.
  • Shrinkage Feeding: CGI shrinks by approximately 3.5 % upon solidification. Risers sized at 10–15 % of casting mass—positioned at strategic hot spots—mitigate shrinkage porosity.

Шығару, Тазарту, and Final Processing

  • Шығару: After 30–45 minutes of cooling, foundries break away mold sand using vibrating tables or pneumatic rams. Reclaimed sand undergoes screening and reclamation for reuse.
  • Тазарту: Shot blasting (for ferrous) or air-carbon arc cutting removes residual sand, sprues, and risers. Technicians inspect for surface cracks or fins before heat treatment.
  • Термиялық өңдеу (Normalization): CGI castings typically normalize at 900 ° ° (1 652 ° F) for 1–2 hours, then air or oil quench.
    This step refines grain size and ensures consistent ferrite–pearlite distribution.
  • Machining and Inspection: After normalization, castings reach final hardness (ferritic CGI ~ 115 Б; pearlitic CGI ~ 180 Б).
    CNC centers machine critical surfaces (tolerances ± 0.10 мм) and inspectors verify graphite morphology (vermicularity ≥ 60 %) via metallography.

Key Differences from Gray Iron Sand Casting

Параметр Сұр темір CGI
Pouring Temperature 1 260-1 300 ° ° (2 300–2 372 ° F) 1 350-1 420 ° ° (2 462–2 588 ° F)
Graphite Morphology Flake graphite (length 50–100 µm) Vermicular graphite (compact flakes, length 25–50 µm)
Melt Treatment Inoculation only (FeSi) Mg/RE addition + inoculation
Mold Binder Requirements Standard phenolic or sodium silicate Higher-strength phenolic/urethane due to erosion risk
Cooling Rate Sensitivity Less critical—flakes form over wide range More critical—cooling 0.5–2 °C/s needed for vermicular
Кішірейту ~ 4.0 % ~ 3.5 %
Matrix Control Primarily pearlitic or mixed ferrite Tailored ferrite–pearlite balance via heat treatment

4. Advantages and Challenges of Sand Casting Compacted Graphite Iron (CGI)

Sand Casting CGI Parts
Sand Casting CGI Parts

Advantages of Sand Casting CGI

Enhanced Strength and Stiffness

CGI’s tensile strength (400-450 МПа) exceeds gray iron by 50 %, while its modulus of elasticity (170–180 GPa) surpasses gray iron by 50 %.

Болғандықтан, CGI castings exhibit less deflection under load—particularly valuable for engine blocks and structural components.

Improved Thermal Conductivity

With thermal conductivity of 40–45 W/m·K, CGI transfers heat 20-30 % faster than gray iron.

This allows quicker engine warm-up, reduced hot spots, and better resistance to thermal fatigue in cylinder heads and liners.

Balanced Damping

CGI’s damping factor (~ 0.005) falls midway between gray (~ 0.010) and ductile (~ 0.002) irons.

, Сорт, CGI absorbs vibration effectively—reducing NVH (noise, діріл, harshness)—while avoiding the high brittleness of gray iron.

Шығындар-тиімді өндіріс

Although CGI adds ~ 5–10 % material cost due to Mg/RE additions and tighter process control, it costs 20-30 % less than ductile iron for equivalent performance.

Lower machining allowances—thanks to improved dimensional stability—further trim casting costs.

Challenges of Sand Casting Compacted Graphite Iron

  1. Tight Melt Chemistry Control: Maintaining Mg within ±0.005 % is critical. A slight deviation can revert graphite morphology to flake or spheroidal, necessitating full‐scale scrapping.
  2. Higher Pouring Temperatures: CGI’s 1 350-1 420 ° ° (2 462–2 588 ° F) melt demands more robust mold binders and coatings to prevent sand erosion and scabbing.
  3. Risk of Carbide Formation: Excess silicon or rapid cooling can produce cementite networks, embrittling CGIs; inoculation and controlled cooling are mandatory.
  4. Porosity Management: CGI’s higher fluidity leads to greater aspiration of gases unless mold venting and degassing practices are exemplary.
  5. Limited Global Foundry Expertise: Although CGI’s market share has grown (especially in automotive), only 20-25 % of iron foundries worldwide have mastered the specialized procedures, raising lead times.

5. Common Compacted Graphite Iron Applications via Sand Casting

Compactd Graphite Iron CGI Diesel engine cylinder block
Compact Graphite Iron CGI Diesel engine cylinder block
  • Automotive diesel engine blocks
  • Cylinder heads and liners
  • Exhaust manifolds and turbocharger housings
  • Pump and compressor housings
  • Gearbox and transmission housings
  • Industrial engine components (E.Г., genset blocks)
  • Hydraulic valve bodies and pump blocks

6. Comparisons to Alternate Casting Materials

Материал Созылу күші (МПа) Жылу өткізгіштік (М / м /) Тығыздық (g / cm³) Damping Capacity Коррозияға төзімділік Айналымдылық Relative Cost Типтік қосымшалар
CGI (Compacted Graphite Iron) 400–450 40–45 ~7.1 Байсалды (~0.005) Байсалды Байсалды Амал (~5–10% > Сұр темір) Diesel engine blocks, Цилиндр бастары
Сұр шойын 200-300 30–35 ~7.2 Биік (~0.01) Байсалды Жақсы Аласа Brake discs, machine beds
Ішкі үтік 550-700 20-25 ~7.2 Аласа (~0.002) Байсалды Байсалды Биік (~20–30% > CGI) Ик-жағалаулар, heavy-duty gears
Алюминий қорытпалары 150–350 120–180 ~2.7 Аласа Биік Үздік Орташа Аэроғарыш, automotive casings
Көміртекті болат (Құю) 400–800 35-50 ~7.8 Өте төмен Аласа Жарлы Биік Structural, Қысым кемелері
Тот баспайтын болат (Құю) 500-900 15-25 ~7.7–8.0 Өте төмен Үздік Poor–Moderate Өте жоғары (~2× CGI) Химиялық, ас, and marine equipment
Магний қорытпалары 150-300 70–100 ~1.8 Аласа Байсалды Жақсы Биік Lightweight aerospace and electronics
Brass/Bronze Alloys 300-500 50–100 ~8.4–8.9 Байсалды Биік Байсалды Биік Клапандар, marine hardware, бұталар

7. Қорытынды

Compacted Graphite Iron (CGI) delivers better strength, қаттылық, and thermal performance than gray iron—without the cost of ductile iron.

It requires tight control of chemistry, high pouring temperatures, and proper mold design to ensure vermicular graphite formation.

Already used in engine blocks and cylinder heads, CGI reduces weight by up to 10% and improves thermal fatigue life by 30%.

Advances in simulation and process control are expanding its use to turbochargers, exhausts, және сорғылар.

With ongoing improvements in alloys and sustainable manufacturing, CGI is becoming a key material in modern, efficient engineering.

-Та Осы, Біз сіздермен сіздермен серіктес болуға дайынбыз, компоненттердің дизайнын оңтайландыру үшін осы жетілдірілген әдістерді қолданамыз, Материалдар, және өндірістік жұмыс ағындары.

Сіздің келесі жобаңыздың әр қойылымнан және тұрақтылық бойынша эталоннан асып кетуін қамтамасыз ету.

Бүгін бізге хабарласыңыз!

 

ЖҚС

Why is sand casting used for CGI?

Sand casting is cost-effective for complex, large, and medium-to-high volume parts.

It accommodates CGI’s specific thermal and mechanical properties, especially in automotive and industrial components.

What are common applications of CGI sand castings?

Typical applications include diesel engine blocks, Цилиндр бастары, Тежегіш компоненттері,

turbocharger housings, and structural machine parts—where strength and thermal stability are critical.

What are the key advantages of Sand Casting Compacted Graphite Iron?

CGI provides excellent strength-to-weight ratio, improved fatigue resistance, better heat dissipation, and lower cost than ductile iron in similar roles.

How does CGI affect machinability?

CGI is moderately machinable—harder and more abrasive than gray iron but easier than ductile iron. Advanced tooling and cutting strategies are recommended.

Is CGI suitable for high-temperature applications?

Иә. Its microstructure resists thermal fatigue and distortion, making it well-suited for components exposed to cyclic thermal loads, such as exhaust manifolds and cylinder heads.

Жоғарыға жылжыңыз