1. Uvod
Welding stainless steels is routine in industry, ali how matters: every stainless group (austenitski, feritski, dupleks, martenzit, precipitation-hardening, and high-alloy grades) brings distinct metallurgical behaviours that determine process choice, filler alloy, toplinski unos, pre/post-treatment, and inspection regimes.
With correct process selection and controls—shielding gas, toplinski unos, filler match, interpass temperature and appropriate post-weld cleaning—most grades can be welded to deliver reliable strength and corrosion resistance.
Misapplied practices, međutim, lead to hot cracking, senzibilizacija, embrittlement or unacceptable corrosion performance.
2. Why Weldability Matters for Stainless Steels
Nehrđajući čelik’s value lies in its unique dual promise: otpor korozije (from its chromium-rich oxide layer) and structural reliability (from its tailored mechanical properties).
In industries such as oil & plin, stvaranje energije, kemijska obrada, konstrukcija, and food equipment, the majority of stainless components require welding during fabrication, installation, or repair.

Weldability is not merely a “manufacturing convenience”—it is the linchpin that ensures this promise holds true in welded components.
Poor weldability undermines stainless steel’s core functions, leading to catastrophic failures, excessive costs, and non-compliance with industry standards.
3. Key Metallurgical Foundations of Stainless Steel Weldability
The weldability of stainless steel is fundamentally controlled by their kemijski sastav i kristalna struktura.
Alloying elements not only define corrosion resistance but also govern how stainless steels behave under the thermal cycles of welding.
Influence of Alloying Elements
| Alloying Element | Role in Base Metal | Impact on Weldability | 
| Krom (CR, 10.5–30%) | Forms passive Cr₂O₃ film for corrosion resistance. | High Cr increases hot cracking risk; Cr carbide (Cr₂₃c₆) precipitation causes sensitization if C > 0.03%. | 
| Nikla (U, 0–25%) | Stabilizira austenit (poboljšava duktilnost, žilavost). | Visok Ni (>20%, Npr., 310S) increases hot cracking risk; low Ni in ferritics reduces ductility in the HAZ. | 
| Molibden (Mokar, 0–6%) | Enhances pitting resistance (raises PREN values). | No direct weldability issues; maintains corrosion resistance if heat input is controlled. | 
| Ugljik (C, 0.01–1.2%) | Strengthens martensitic steels; affects sensitization. | >0.03% in austenitic → carbide precipitation and intergranular corrosion; >0.1% in martensitic → cold cracking risk. | 
| Titanijum (Od) / Niobium (NB) | Forms stable TiC/NbC instead of Cr₂₃C₆, Sprječavanje osjetljivosti. | Improves weldability of stabilized grades (Npr., 321, 347); reduces HAZ degradation. | 
| Dušik (N, 0.01–0,25%) | Strengthens austenite and duplex phases; increases pitting resistance. | Helps control ferrite balance in duplex welds; excess N (>0.25%) may cause porosity. | 
Crystal Structures and Their Influence
- Austenit (FCC): High toughness, dobra duktilnost, i izvrsna zavarivost. Međutim, fully austenitic compositions are prone to vruće pucanje due to their low solidification range.
 - Ferit (BCC): Good resistance to hot cracking but limited ductility and toughness in the heat-affected zone (Haz). Grain growth during welding can embrittle ferritic steels.
 - Martensite (BCT): Very hard and brittle, especially if high carbon is present. Welding tends to create cracks unless preheating and post-weld heat treatments are applied.
 - Dupleks (mixed FCC + BCC): The combination of ferrite and austenite offers both strength and corrosion resistance, but precise heat input control is critical to maintain the ~50/50 phase balance.
 
4. Weldability of Austenitic Stainless Steels (300 Niz)
Austenitic stainless steels—especially the 300 niz (304, 304L, 316, 316L, 321, 347)—are the most widely used stainless steels due to their izvrsna otpornost na koroziju, duktilnost, i žilavost.
They are generally the most weldable stainless family, explaining their widespread use in prerada hrane, kemijske biljke, ulje & plin, morski, and cryogenic applications.
Međutim, njihov fully austenitic crystal structure i high thermal expansion bring specific welding challenges that require careful control.

Key Weldability Challenges
| Izazov | Explanation | Mitigation Strategies | 
| Vruće pucanje | Fully austenitic solidification (A-mode) creates susceptibility to solidification cracking in weld metal. | Use filler metals with small ferrite content (ER308L, ER316L); control weld pool solidification rate. | 
| Senzibilizacija (Oborine karbida) | Cr₂₃C₆ forms at grain boundaries between 450–850 °C if carbon >0.03%, smanjenje otpornosti na koroziju. | Use low-carbon grades (304L, 316L) or stabilized grades (321, 347); limit interpass temperature ≤150–200 °C. | 
| Izobličenje & Residual Stress | Austenitic steels expand ~50% more than carbon steels; low thermal conductivity concentrates heat. | Balanced welding sequences, proper fixturing, mali unos topline. | 
| Poroznost | Nitrogen absorption or contamination in the weld pool may form gas pockets. | High-purity shielding gases (Ar, Ar + O₂); prevent N₂ contamination. | 
Welding Consumables & Filler Selection
- Common filler metals: ER308L (for 304/304L), ER316L (for 316/316L), ER347 (za 321/347).
 - Ferrite balance: Ideal FN (ferrite number) in weld metal: 3–10 to reduce hot cracking.
 - Shielding gases: Argon, or Ar + 1–2% O₂; Ar + He blends improve penetration in thicker sections.
 
Welding Process Suitability
| Proces | Suitability | Bilješke | 
| GTAW (Sisav) | Izvrstan | Precizna kontrola; ideal for thin walls or critical joints. | 
| Odgajan (MI) | Vrlo dobar | Higher productivity; requires good shielding control. | 
| SMAW (Stick) | Dobro | Versatile; use low-hydrogen electrodes. | 
| FCAW | Dobro | Productive for thick sections; requires careful slag removal. | 
| Laser/EB | Izvrstan | Low distortion, high precision; used in advanced industries. | 
5. Weldability of Ferritic Stainless Steels (400 Niz)
Ferritic stainless steels, primarily 400 series grades takav 409, 430, i 446, are characterized by a body-centered cubic (BCC) kristalna struktura.
They are widely used in automotive exhaust systems, decorative architectural components, i industrijske opreme due to their umjerena otpornost na koroziju, magnetska svojstva, and lower cost compared to austenitic grades.
While ferritic stainless steels can be welded, njihov weldability is more limited compared to austenitic grades.
Kombinacija niska duktilnost, high thermal expansion, and coarse grain growth u zoni utjecaja topline (Haz) introduces specific challenges.

Key Weldability Challenges
| Izazov | Explanation | Mitigation Strategies | 
| Brittleness / Low Toughness | Ferritic steels are inherently less ductile; HAZ can become brittle due to grain growth. | Limit heat input, use thin sections or intermittent welding; avoid rapid cooling. | 
| Izobličenje / Thermal Stress | Coefficient of thermal expansion ~10–12 µm/m·°C; lower than austenitic but still significant. | Pre-bend, proper fixturing, and controlled weld sequence. | 
| Pucketanje (Cold / Hydrogen-assisted) | Martensite-like structures may form in some high-C ferritics; hydrogen from moisture can induce cracking. | Prethodno zagrijte (150–200 °C) za deblje dijelove; use dry electrodes and proper shielding gases. | 
| Reduced Corrosion Resistance in HAZ | Grain coarsening and depletion of alloying elements can locally reduce corrosion resistance. | Minimize heat input and avoid post-weld exposure to sensitization temperature ranges (450–850 °C). | 
Welding Consumables & Filler Selection
- Common filler metals: ER409L for 409, ER430L for 430.
 - Filler selection: Match the base metal to avoid excessive ferrite or intermetallic formation in welds.
 - Shielding gases: Argon or Ar + 2% O₂ for gas tungsten arc welding (GTAW) or gas metal arc welding (Odgajan).
 
Welding Process Suitability
| Proces | Suitability | Bilješke | 
| GTAW (Sisav) | Vrlo dobro | Precise heat control, ideal for thin sections. | 
| Odgajan (MI) | Dobro | Suitable for production; requires shielding gas optimization. | 
| SMAW (Stick) | Umjeren | Use low-hydrogen electrodes; risk of HAZ embrittlement. | 
| FCAW / Laser | Ograničen | May require preheating; risk of cracking in thicker sections. | 
6. Weldability of Martensitic Stainless Steels (400 Niz)
Martensitic stainless steels, commonly 410, 420, 431, jesu high-strength, hardenable alloys characterized by high carbon content and a body-centered tetragonal (BCT) martensitic structure.
These steels are widely used in turbinske lopatice, osovine pumpi, cutlery, Komponente ventila, and aerospace parts, where strength and wear resistance are critical.
Martensitic stainless steels are considered challenging to weld due to their tendency to form hard, brittle microstructures in the heat-affected zone (Haz), which increases the risk of cold cracking and reduced toughness.

Key Weldability Challenges
| Izazov | Explanation | Mitigation Strategies | 
| Cold Cracking / Hydrogen-Assisted Cracking | Hard martensite forms in HAZ, susceptible to cracking if hydrogen is present. | Preheat 150–300 °C; use low-hydrogen electrodes; control interpass temperature. | 
| Hardness in HAZ | Rapid cooling produces high hardness (Hv > 400), leading to brittleness. | Post-weld tempering at 550–650 °C to restore ductility and reduce hardness. | 
| Izobličenje & Residual Stress | High thermal expansion and rapid phase transformation generate residual stress. | Pravilno učvršćivanje, balanced welding sequences, and controlled heat input. | 
| Osjetljivost korozije | HAZ may experience reduced corrosion resistance, especially in wet or chloride-containing environments. | Select corrosion-resistant martensitic grades; avoid sensitization temperature range. | 
Welding Consumables & Filler Selection
- Common filler metals: ER410, ER420, ER431, matched to base metal grade.
 - Preheat and interpass: 150–300 °C depending on thickness and carbon content.
 - Shielding gases: Argon or Ar + 2% He for GTAW; suha, low-hydrogen electrodes for SMAW.
 
Welding Process Suitability
| Proces | Suitability | Bilješke | 
| GTAW (Sisav) | Vrlo dobar | Precizna kontrola; recommended for critical or thin-section components. | 
| Odgajan (MI) | Umjeren | Requires low heat input; may need preheating on thicker sections. | 
| SMAW (Stick) | Umjeren | Use low-hydrogen electrodes; maintain preheat. | 
| Laser / EB Welding | Izvrstan | Localized heating reduces HAZ size and cracking risk. | 
Post-Weld Performance Considerations
| Performance Aspect | Observations After Proper Welding | Praktične implikacije | 
| Mehanička čvrstoća | Welds can match base metal tensile strength after post-weld tempering; as-welded HAZ may have hardness >400 Hv. | Components achieve required strength and wear resistance post-tempering; avoid loading immediately after welding. | 
| Duktilnost & Žilavost | Slightly reduced in as-welded HAZ; restored after tempering. | Critical for impact-prone parts like pump shafts and valves. | 
| Otpor korozije | Reduced locally in HAZ if not properly tempered; generally moderate for martensitic grades. | Suitable for low-to-moderate corrosion environments; use protective coatings if needed. | 
| Održavanje života & Izdržljivost | Post-weld tempering ensures long-term stability; untempered welds may crack under stress or cyclic loading. | Post-weld heat treatment is mandatory for safety-critical components. | 
7. Weldability of Duplex Stainless Steels (2000 Niz)
Duplex stainless steels (DSS), commonly referred to as 2000 niz (Npr., 2205, 2507), jesu dual-phase alloys containing approximately 50% austenite and 50% ferit.
This combination provides visoka snaga, izvrsna otpornost na koroziju, and good toughness, što ih čini idealnim za kemijska obrada, offshore oil & plin, biljke za desalinizaciju, i morske aplikacije.
While duplex steels offer significant advantages over austenitic or ferritic grades, njihov weldability is more sensitive due to the need to maintain a balanced ferrite-austenite ratio and avoid the formation of intermetallic phases (sigma, chi, or chromium nitrides).
Key Weldability Challenges
| Izazov | Explanation | Mitigation Strategies | 
| Ferrite–Austenite Imbalance | Excess ferrite reduces toughness; excess austenite reduces corrosion resistance. | Control heat input and interpass temperature; select appropriate filler metal with matching duplex composition. | 
| Intermetallic Phase Formation | Sigma or chi phases may form at 600–1000 °C, causing embrittlement and reduced corrosion resistance. | Minimize heat input and cooling times; avoid multiple reheats; rapid post-weld cooling. | 
| Hot Cracking in Weld Metal | Duplex steels solidify primarily as ferrite; small amounts of austenite required to prevent cracking. | Use filler metals designed for duplex welding (ERNiCrMo-3 or similar); maintain ferrite number (FN) 30–50. | 
| Izobličenje & Residual Stress | Moderate thermal expansion; low conductivity concentrates heat in the weld zone. | Proper fixturing and balanced welding sequence; interpass temperature ≤150–250 °C. | 
Welding Consumables & Filler Selection
- Common filler metals: ER2209, ER2594, or duplex-matched fillers.
 - Ferrite number (FN) kontrolirati: FN 30–50 in weld metal for optimal toughness and corrosion resistance.
 - Shielding gases: Pure argon for GTAW; Ar + small additions of N₂ (0.1–0,2%) may be used to stabilize austenite.
 
Welding Process Suitability
| Proces | Suitability | Bilješke | 
| GTAW (Sisav) | Izvrstan | High control over heat input and phase balance; preferred for critical piping and vessels. | 
| Odgajan (MI) | Vrlo dobar | Suitable for production; control welding speed and interpass temperature carefully. | 
| SMAW (Stick) | Umjeren | Low productivity; requires duplex-compatible low-hydrogen electrodes. | 
| Laser / EB Welding | Izvrstan | Localized heating minimizes HAZ; preserves ferrite-austenite balance. | 
Post-Weld Performance Considerations
| Performance Aspect | Observations After Proper Welding | Praktične implikacije | 
| Mehanička čvrstoća | Weld metal tensile strength typically 620–720 MPa; HAZ slightly lower but within 90–95% of base metal. | Allows use in high-pressure piping and structural applications; retains superior strength over austenitic steels. | 
| Duktilnost & Žilavost | Dobro, žilavost utjecaja >100 J at room temperature if ferrite content controlled. | Suitable for offshore and chemical plant environments; avoids brittle failure in HAZ. | 
| Otpor korozije | Pitting and crevice corrosion resistance comparable to base metal (PREN 35–40 for 2205, 2507). | Reliable in chloride-rich and acidic environments; ensures long-term service life. | 
| Održavanje života & Izdržljivost | Properly welded duplex joints resist intergranular corrosion and stress corrosion cracking. | High reliability for critical offshore, kemijski, and desalination applications. | 
8. Weldability of Precipitation-Hardening (PH) Nehrđajući čelici
Precipitation-hardening stainless steels, takav 17-4 PH, 15-5 PH, i 13-8 Mokar, jesu martensitic or semi-austenitic alloys strengthened through controlled precipitation of secondary phases (Npr., bakar, niobium, or titanium compounds).
They combine visoka snaga, umjerena otpornost na koroziju, i izvrsnu žilavost, što ih čini idealnim za zrakoplovstvo, obrana, kemijski, and high-performance mechanical applications.
Welding PH stainless steels presents unique challenges, as the precipitation-hardening mechanism is disturbed by the thermal cycle, potentially leading to softening in the heat-affected zone (Haz) ili loss of strength in weld metal.
Key Weldability Challenges
| Izazov | Explanation | Mitigation Strategies | 
| HAZ Softening | Precipitati (Npr., Pokrajina, NB) dissolve during welding, reducing hardness and strength locally. | Poslije toplinske obrade (solution + aging) to restore mechanical properties. | 
| Cold Cracking | Martensitic structure in HAZ may be hard and brittle; residual stresses from welding exacerbate cracking. | Preheat 150–250 °C; low-hydrogen electrodes; controlled interpass temperature. | 
| Izobličenje & Residual Stress | Moderate thermal expansion; thermal cycles can induce warping and residual stress in thin sections. | Pravilno učvršćivanje, mali unos topline, balanced weld sequence. | 
| Corrosion Resistance Reduction | Local softening and altered precipitation may reduce corrosion resistance, particularly in aged or overaged zones. | Use solution treatment post-weld; control welding heat input. | 
Welding Consumables & Filler Selection
- Dodatni metali: Matched to base metal (Npr., ER630 for 17-4 PH).
 - Preheat and interpass temperature: 150–250 °C depending on thickness and grade.
 - Shielding gases: Argon or Ar + He blends for GTAW; suha, low-hydrogen electrodes for SMAW.
 
Welding Process Suitability
| Proces | Suitability | Bilješke | 
| GTAW (Sisav) | Izvrstan | Precise heat control; ideal for thin-section, critical, or aerospace components. | 
| Odgajan (MI) | Vrlo dobar | Higher productivity; careful heat input management required. | 
| SMAW (Stick) | Umjeren | Requires low-hydrogen electrodes; limited for thin sections. | 
| Laser / EB Welding | Izvrstan | Minimizes HAZ width and thermal impact; preserves base metal microstructure. | 
Example Post-Weld Data:
| Razred | Weld Process | Zatečna čvrstoća (MPA) | Tvrdoća (Hrc) | Bilješke | 
| 17-4 PH | GTAW | 1150 (base: 1180) | 30–32 | Post-weld aging mandatory; HAZ softening restored. | 
| 15-5 PH | Odgajan | 1120 (base: 1150) | 28–31 | High toughness and corrosion resistance maintained after aging. | 
| 13-8 Mokar | GTAW | 1200 (base: 1220) | 32–34 | High-strength aerospace components; controlled welding critical. | 
9. Comparative Weldability Summary
| Aspekt | Austenitski (300 Niz) | Feritni (400 Niz) | martenzitni (400 Niz) | Dupleks (2000 Niz) | Taloženje-Kaljenje (PH) | 
| Representative Grades | 304, 304L, 316, 316L, 321, 347 | 409, 430, 446 | 410, 420, 431 | 2205, 2507 | 17-4 PH, 15-5 PH, 13-8 Mokar | 
| Mechanical Weldability | Izvrstan; HAZ retains ductility | Umjeren; lower ductility, HAZ can be brittle | Umjeren; high risk of cold cracking | Dobro; strength typically maintained | Moderate to challenging; HAZ softening | 
| Corrosion Resistance Post-Weld | Izvrstan; low-carbon/stabilized grades prevent sensitization | Dobro; may be locally reduced if heat input excessive | Umjeren; may be locally reduced in HAZ | Izvrstan; maintain ferrite–austenite balance | Umjeren; restored after post-weld heat treatment | 
| Izazovi zavarivosti | Hot cracking, izobličenje, poroznost | Grain coarsening, pucketanje, HAZ brittleness | Hard martensitic HAZ, cold cracking | Ferrite/austenite imbalance, intermetallic phase formation | HAZ softening, residual stress, Smanjena žilavost | 
| Typical Post-Weld Considerations | Minimal preheat; low interpass temperature; optional solution annealing | Preheat for thick sections; controlled heat input | Preheat and low-hydrogen electrodes; mandatory post-weld tempering | Heat input control; interpass ≤150–250 °C; filler metal selection | Prethodno zagrijte, low-hydrogen electrodes, mandatory post-weld solution + aging | 
| Prijava | Hrana, farmaceut, kemijske biljke, morski, cryogenics | Automotive exhausts, arhitektonske ploče, high-temp industrial components | Valve components, osovine, dijelovi pumpe, zrakoplovstvo | Na obali, kemijske biljke, desalinizacija, morski | Zrakoplovstvo, obrana, high-performance pumps, kirurški instrumenti | 
Key Observations:
- Austenitni nehrđajući čelici are the most forgiving, ponuda excellent weldability with minimal precautions.
 - Ferritic grades are more sensitive to brittleness and grain growth, requiring careful heat input management.
 - Martensitic steels need preheating and post-weld tempering to prevent cold cracking and restore toughness.
 - Duplex steels zahtijevati precise phase control to avoid ferrite-rich or brittle welds while maintaining corrosion resistance.
 - PH stainless steels must undergo post-weld solution treatment and aging to restore strength and hardness.
 
10. Zaključak
The weldability of stainless steel spans a spectrum—from highly weldable austenitic grades to challenging martensitic and PH steels.
Dok most grades can be welded successfully, success hinges on understanding the metallurgical behavior, applying appropriate welding procedures, and performing necessary pre- or post-weld heat treatments.
For engineers and fabricators, weldability is not just about joining—it is about preserving corrosion resistance, jačina, i radni vijek.
Careful filler selection, heat input management, and adherence to codes ensure stainless steel components meet both design and lifecycle expectations.
Česta pitanja
Why is 316L more weldable than 316 nehrđajući čelik?
316L has a lower carbon content (C ≤0.03% vs. C ≤0.08% for 316), which drastically reduces sensitization risk.
During welding, 316’s higher carbon forms Cr₂₃C₆ carbides at grain boundaries (depleting Cr), leading to intergranular corrosion.
316L’s low carbon prevents this, s a 95% pass rate in ASTM A262 IGC testing vs. 50% za 316.
Do ferritic stainless steels require preheating?
No—ferritic stainless steels (409, 430) have low carbon content, so preheating is not needed to prevent cold cracking.
Međutim, post-weld annealing (700–800°C) is recommended to recrystallize large HAZ grains, restoring ductility and toughness (increases impact energy by 40–50%).
Limenki 17-4 PH stainless steel be welded without post-weld heat treatment?
Technically yes, but the HAZ will be significantly softened (tensile strength drops from 1,150 MPA do 750 MPa for H900 temper).
For load-bearing applications (Npr., aerospace brackets), Poslije otopine žarenje (1,050° C) + re-aging (480° C) is mandatory to reform copper precipitates, restoring 95% of the base metal’s strength.
Which welding process is best for thin austenitic stainless steel (1–3 mm)?
GTAW (Sisav) is ideal—its low heat input (0.5–1.5 kJ/mm) minimizes HAZ size and sensitization risk, while its precise arc control produces high-quality, low-porosity welds.
Use a 1–2 mm tungsten electrode, argon shielding gas (99.99% pure), and travel speed 100–150 mm/min for optimal results.



