Темірді темір құю ​​өндірушісі

Темірді темір құю ​​бойынша қызметтер

Мазмұн көрсету

1. Кіріспе

Ductile iron sand casting is a manufacturing process that combines the metallurgical advantages of ductile iron—an alloy with spherical graphite nodules—with the versatility of sand casting to produce high-strength, ductile components.

Defined as the production of near-net-shape parts by pouring molten ductile iron into sand molds, this process balances performance, құны, және масштабталуы, making it a cornerstone of industries from automotive to infrastructure.

2. Ішкі үтік дегеніміз не?

Ішкі үтік, сонымен қатар белгілі түйінсіз үтік немесе Сфералық графит темір (Sg темір), is a type of cast iron that exhibits superior strength, қаттылық, and ductility compared to traditional gray iron.

Its key distinguishing feature lies in the form of its graphite: spherical nodules instead of sharp flakes.

This unique microstructure results in improved mechanical properties, especially under tensile and impact loads.

Developed in 1943 by Keith Millis, ductile iron became a breakthrough material due to its ability to combine the casting advantages of iron (дағдылу, ease of machining, және қарсылық киіңіз) with mechanical properties closer to mild steel.

Ductile Iron Sand Casting Valve Parts
Ductile Iron Sand Casting Valve Parts

Composition and Metallurgy

The typical chemical composition of ductile iron is:

  • Көміртегі (Б): 3.2–3.8%
  • Кремний (Жіне): 2.2–2.8%
  • Марганец (М.на): ≤0.3%
  • Магний (Мг): 0.03–0.08% (nodulizing element)
  • Фосфор (Б): ≤0.05%
  • Күкірт (С): ≤0.02%
  • Үтік (Ақысу): Баланс

The addition of magnesium or cerium during the melt treatment transforms the graphite morphology from flakes (as in gray iron) to nodules, which drastically reduces stress concentration points.

Matrix Types

The performance of ductile iron is strongly influenced by its matrix structure, which can be tailored through alloying and cooling rate:

  • Ферритті матрица: Жұмсақ және икемді, with elongation up to 18%, ideal for impact-resistant components.
  • Інжу-матрица: Жоғары созылу күші (дейін 700 МПа) және қарсылық киіңіз, commonly used in gears and crankshafts.
  • Ferrite–Pearlite Mix: Balanced mechanical properties for general engineering applications.
  • Темірбелі үтік (Адди): Heat-treated variant with tensile strength exceeding 1,200 МПа and excellent fatigue life.

3. Why Sand Casting for Ductile Iron?

Құмның құюы remains the most widely used manufacturing method for ductile iron due to its flexibility, Шығындар тиімділігі, and ability to produce a wide range of shapes and sizes.

Ductile iron’s unique combination of strength, икемділік, and machinability makes it a preferred material for various industries, and when paired with sand casting, it offers significant design and economic advantages.

Ductile Iron Sand Casting Machinery Parts
Ductile Iron Sand Casting Machinery Parts

Cost-Effectiveness and Scalability

  • Lower Tooling Costs: Compared to permanent mold or investment casting, sand casting requires simpler, less expensive tooling.
    For prototypes or low-to-medium volume production, the cost savings can be as high as 30-50%.
  • Материалдық тиімділік: With sand molds being 90–95% recyclable, material waste is minimized, contributing to overall cost reduction.
  • Flexible Production Volume: Sand casting is equally effective for single prototypes жіне mass production runs—especially when using automated molding lines.

Size and Weight Flexibility

  • Sand casting is ideal for producing large ductile iron components, ranging from a few kilograms to over 2000 кг (2 тону), which is challenging for investment casting or die casting.
  • The process can accommodate thick sections (50 мм немесе одан көп) and large cross-sectional transitions without significant risk of defects like shrinkage cavities, provided proper gating and risering are employed.

Design Versatility

  • Күрделі геометриялар: With the use of cores, intricate internal cavities (E.Г., water jackets in engine blocks) can be formed.
  • Adaptable Molding Sands: Green sand is suitable for general components like manhole covers, while resin-bonded sand enables Тиберлер (±0.3 mm) for precision parts such as gear housings.
  • Rapid Design Changes: Patterns can be easily modified, especially with 3D-printed sand molds or patterns, reducing lead times by up to 40-50% compared to permanent mold alternatives.

Mechanical Property Optimization

  • Sand casting provides moderate cooling rates due to the low thermal conductivity of sand (~0.2–0.5 W/m·K), which allows for uniform graphite nodule formation.
  • Metallurgical Treatments: Magnesium nodulization and post-casting heat treatments (Ақша салу, Тымбитора) can be seamlessly integrated into the process to achieve targeted mechanical properties such as:
    • Созылу күші: up to 600–700 MPa
    • Іуу: 10-18% (ferritic grades)

Market and Application Suitability

  • Sand casting of ductile iron dominates sectors like автомобиль (Қозғалтқыш блоктары, ик-жағалаулар), Ауыр машиналар (Редукторлар), and infrastructure (клапандар, Құбыр арматуралары).
  • Сәйкес global foundry reports, үстінде 60% of ductile iron castings are produced using sand molds, owing to its adaptability for large and medium-size components.

4. The Ductile Iron Sand Casting Process

The ductile iron sand casting process marries the versatility of traditional sand casting with stringent metallurgical controls to produce parts with superior strength, икемділік, және қаттылық.

Ductile Iron Sand Casting Pipe fittings
Ductile Iron Sand Casting Pipe Fittings

Үлгі және қалыптарды дайындау

Үлгіні құру

  • Материалдар & Кішірейту: Patterns are fabricated from wood, пластмасса, or—preferably for high‑volume runs—aluminum tooling.
    Ductile iron experiences 3–5% linear shrinkage on solidification, so patterns incorporate a 1–3% oversize allowance to achieve final net dimensions.
  • Жылдам прототиптеу: For prototype batches, stereolithography or fused‑filament 3D printed plastic patterns can cut lead times by up to 50%, enabling design iterations in days rather than weeks.

Sand Mold Types

  • Green Sand Molds
    • Өнімді: ~90% silica sand, 5% бентонитті саз, and 3–5% water.
    • Сипаттамасы: Low cost and highly recyclable (дейін 90% sand reclamation).
    • Қолданбалар: Ideal for non‑critical or large components (E.Г., Манхол қақпағы, Сорғы корпустары).
  • Resin‑Bonded (“No‑Bake”) Sand Molds
    • Өнімді: Silica sand mixed with 1–3% phenolic or furan binder and a catalyst.
    • Шыдам: Қол жеткізуге ±0.3 mm dimensional accuracy and smoother mold surfaces.
    • Қолданбалар: Precision parts requiring tighter tolerances—gear housings, hydraulic pump bodies.

Өзектер жасау

  • Internal Cavities: Sand cores, bonded with resin and cured at ambient temperature, create complex internal features such as engine block water jackets or oil galleries.
  • Жобаның бұрыштары & Қолдау: Cores incorporate 1–2° draft and metallic chaplets or core prints to prevent shifting under metal pressure.

Melting and Nodulization

Еркелу

  • Furnace Type: Induction furnaces offer precise temperature control at 1400–1500 °C and can process charge mixes containing 60–80% recycled ductile iron scrap.
    Modern practice retains up to 95% of virgin mechanical properties in recycled melts.

Nodulization

  • Mg or Ce Additions: -Та 0.03–0.08 wt.%, магний (via Mg‑ferrosilicon alloy) or cerium is injected into the melt to convert graphite flakes into spheroidal nodules—critical for ductility.
  • Sensitivity to Impurities: Even 0.04 wt.% sulfur or trace oxygen can “poison” nodulization, reverting nodules to flakes, so rigorous furnace atmosphere and ladle metallurgy control are essential.

Егу

  • Ferrosilicon Treatment: Қосу 0.2–0.5 wt.% ferrosilicon immediately after nodulizer refines nodule count (targeting >80 nodules/mm²) and prevents chill (unwanted martensite or cementite).
  • Матрицалық бақылау: Adjusting silicon and cooling rate yields the desired ferrite–pearlite matrix balance, tailoring strength vs. икемділік.

Құю және қатайту

Құю

  • Температура & Flow: Melt is tapped at 1300–1350 °C. A well‑designed gating system controls flow rates of 0.5-2 кг / с, minimizing turbulence that can entrain oxides or air.
  • Gate Design: Bottom‑pour or ingate gating with tapered runners and chokes ensures laminar fill to prevent cold shuts and oxide films.

Күшейту

  • Жылу өткізгіштік: Sand mold conductivity of 0.2–0.5 W/m·K slows cooling, promoting uniform nodule growth.
  • Уақыт & Feeding: Smaller parts solidify in 10–20 minutes, while large sections may require дейін 60 минуттары.
    Proper placement of risers and chills feeds shrinkage and controls directional solidification to avoid internal voids.

Шарлау және әрлеу

Шығару

  • Mold Removal: Vibratory shakeout systems break away the sand mold, with resin‑bonded cores removed via water‑jet or pneumatic knockout.

Тазарту

  • Трастинг: Abrasive blasting (glass beads or steel shot) removes residual sand and scale, yielding a typical surface finish of Ra 12.5–25 μm.

Optional Heat Treatments

  1. Ақша салу:850–900 °C for 2 сағат, followed by controlled cooling—softens the matrix for easier machining, reducing cutting forces and tool wear.
  2. Тымбитора:500–550 °C for 1–2 hours enhances tensile strength (дейін 600 МПа in specially alloyed grades) and improves impact resistance for high‑load applications such as gears and crankshafts.

5. Properties of Ductile Iron Sand Castings

Baseline Mechanical Properties (Typical ASTM A536 Grades)

Indicative values; exact results depend on chemistry, section size, Салқындату жылдамдығы, nodularity, және термиялық өңдеу.

Дәреже (ASTM A536) & (МПа) YS (МПа) Іуу (%) Қаттылық (Б) Типтік матрица
60-40-18 414 276 18 130-180 Mostly ferritic
65-45-12 448 310 12 150-190 Ferritic–pearlitic
80-55-06 552 379 6 170-230 Mainly pearlitic
100-70-03 690 483 3 200-270 Fine pearlitic
120-90-02 (high‑strength) 830-900 620-700 2 240-300 Көкжуар + alloyed carbides
Адди (E.Г., austempered grades) 900–1600 600–1300 1-0 (grade dependent) 250-450 Ausferritic (bainitic)

Әсер ету қаттылық & Fracture Behavior (ASTM E23 / E399)

  • Charpy V‑notch (CVN):
    • Ферритикалық бағалар: әдетте 15–30 J (Rt).
    • Ferritic–pearlitic: 8–20 J.
    • Інжу: 5–12 J.
    • Адди: 30–100 J, depending on austempering window.
  • Сынық қаттылығы (K_IC): ~40–90 MPa√m for standard DI; ADI varies widely but can be competitive with low‑alloy steels.
  • Low‑temperature service: Specify CVN at the minimum service temperature (E.Г., –20 °C) for safety‑critical parts (клапандар, pressure components).
Ductile Iron Sand Casting Parts
Ductile Iron Sand Casting Parts

Шаршау өнімділігі (ASTM E466 / E739 / E647)

  • High‑cycle fatigue limit (R = -1):35–55% of UTS for ferritic–pearlitic grades (E.Г., 160–250 MPa for a 450 MPA UTS).
  • Адди grades can reach fatigue limits of 300–500 MPa.
  • Crack growth (da/dN, ASTM E647): Pearlitic and ADI grades exhibit slower growth at a given ΔK, but ferritic grades resist crack initiation well due to higher ductility.
  • Include surface finish and residual stress in fatigue specs; as‑cast Ra 12–25 µm surfaces may reduce fatigue life by >20% vs machined/shot‑peened surfaces.

Қаттылық & Кию (ASTM e10 / E18)

  • Бринелл (Hbw): Primary production control metric; correlates roughly to UTS (МПа) ≈ 3.45 × HB for many DI matrices.
  • Ranges:
    • Феррити: 130-180 б
    • Ferritic–pearlitic: 160-230 т.с.
    • Інжу: 200-300 т.с.
    • Адди: 250–450 HB
  • Wear testing: Pin‑on‑disk or ASTM G65 (абразивті тозу) can be used for duty‑critical parts (E.Г., сорғылар, берікек). ADI often outperforms conventional DI in wear–strength trade‑offs.

Жылу & Физикалық қасиеттері

  • Жылу өткізгіштік: ~25–36 W/m·K (lower than gray iron due to nodular, not flake, графигі).
  • Жылу кеңеюінің коэффициенті (Табғы): ~10–12 × 10⁻⁶ /°C (20–300 °C range).
  • Демпингтік қабілеттілік: Higher than steels, lower than gray iron—beneficial for Нвх (шу, діріл, және қатал) control in automotive and machinery components.
  • Электрлік кедергісі: ~0.8–1.1 μΩ·m, higher than steel (good for certain EMI/thermal management considerations).

Сынық қаттылығы & Crack Growth

  • Сынық қаттылығы (K_IC): ~40–90 MPa√m for ferritic–pearlitic grades; ADI varies with ausferritic morphology but can be competitive with low‑alloy steels.
  • Fatigue Crack Growth Rate (da/dN): Lower in ferritic grades at a given ΔK due to ductility, but high‑strength pearlitic/ADI grades resist crack initiation better in high-cycle regimes.

Коррозия & Беттік тұтастық

  • Жалпы коррозия: Similar to low‑carbon steels in many environments; жабындар, paint systems, or surface treatments (E.Г., phosphating, nitriding for wear) are often applied.
  • Graphitic Corrosion: Possible in aggressive environments when matrix corrodes preferentially, leaving graphite network—design and protection must consider service conditions.

6. Design for Manufacturability of Ductile Iron Sand Casting

Өндіруге арналған дизайн (DFM) in ductile iron sand casting aims to balance engineering requirements, құны, and production efficiency while minimizing defects.

The design must consider the unique solidification behavior of ductile iron, its shrinkage characteristics, and the sand casting process parameters.

Ductile Iron Sand Casting Motor Housing Parts
Ductile Iron Sand Casting Motor Housing Parts

Wall Thickness Guidelines

  • Қабырғаның минималды қалыңдығы: Әдетте 4-6 мм for ductile iron due to its slower fluidity compared to aluminum; thinner walls risk misruns or incomplete filling.
  • Uniform Wall Sections: Avoid sharp transitions; use gradual changes or fillets (R ≥ 3–5 mm) to minimize localized stress and reduce hot spots that can lead to shrinkage porosity.
  • Ribbing & Stiffeners: When thin sections are unavoidable, ribs can be added to maintain structural rigidity and ease of casting.

Draft Angles and Part Geometry

  • Жобаның бұрыштары:1°–2° for vertical surfaces in green sand molds; дейін 3°–5° for resin-bonded sand to facilitate pattern withdrawal.
  • Fillet Radii: Fillets reduce stress concentrations and prevent hot tearing. Avoid sharp inside corners (recommend R ≥ 2–5 mm).
  • Undercuts and Complex Features: Пайдалану core designs for undercuts or hollow sections; avoid unnecessary complexity that increases tooling cost.

Shrinkage Allowances

  • Shrinkage Rate: Ductile iron shrinks approximately 3–5% Реттеу кезінде.
  • Үлгі дизайны: Patterns must incorporate 1–3% shrinkage allowance, depending on section thickness and expected cooling rates.
  • Раузар және тамақтанушылар: Proper placement and size of risers are essential to compensate for shrinkage and prevent internal porosity.

Gating and Risering Strategies

  • Gate Design: Low-turbulence gating is critical to reduce oxidation and magnesium fade. Use bottom gating or side gating systems for smoother metal flow.
  • Choke Area and Flow Rate: Design choke areas to maintain 0.5-2 кг / с flow rates, preventing cold shuts or air entrapment.
  • Riser Insulation: Exothermic sleeves and chills may be used to control solidification and ensure directional solidification.

Defect Prevention Considerations

  • Porosity and Gas Defects: Proper venting, degassing, and mold permeability are vital.
  • Misruns and Cold Shuts: Ensure adequate pouring temperature (1300–1350 °C) and smooth metal flow paths.
  • Hot Tears and Cracks: Control thermal gradients with chills or optimized mold design.
  • Модерлік жәрдемақы: Әдетте 2–4 mm per surface, depending on the precision required.

7. Cost Analysis of Ductile Iron Sand Casting

Cost analysis of ductile iron sand casting involves evaluating raw materials, Құралдар, production cycle time, жіне сынықтар ставкалары, as well as comparing the overall economics against alternative casting processes.

Ductile iron sand casting is often considered a cost-effective solution for medium-to-large parts requiring a balance of strength, төзімділік, және өңдеу қабілеті.

Raw Material and Alloying Costs

  • Base Iron: Typically derived from 60–80% recycled scrap (болат, ductile iron returns), which reduces material costs by 20-30% compared to virgin iron.
  • Nodulizers: Magnesium or magnesium-ferrosilicon alloys are added (0.03–0.08%) to achieve ductility.
    While magnesium costs are relatively high, the addition is minimal (≈ $10–20 per ton of iron).
  • Inoculants: Ferrosilicon (0.2–0.5%) adds another $3–5 per ton.
  • Overall Raw Material Cost: For a 1-ton casting, raw materials typically account for 30–40% of total cost, varying by grade (E.Г., ferritic vs. pearlitic ductile iron).

Tooling and Mold Preparation

  • Өрнектер:
    • Wooden patterns: Төмен баға (~ $1,000–2,000 for medium-sized parts), but limited durability.
    • Aluminum or steel patterns: High durability but more expensive (~ $5,000–15,000).
    • 3D-басылған үлгілер: Reduce lead time by 30-50%, costing $500–3,000 Күрделілікке байланысты.
  • Core Boxes: Add additional tooling costs for hollow or complex shapes.
  • Tooling amortization can spread across production volumes; for high-volume runs, tooling cost per part can drop below $1-5.

Production Cycle and Labor Costs

  • Цикл уақыты: Ductile iron sand casting cycle times range from 2 қарай 24 сағат, depending on mold preparation, құю, және салқындату.
  • Labor: Labor accounts for 20-30% of the total cost, including mold preparation, құю, Шығару, and cleaning.
  • Өткізіп жібер: Average casting yield is 60-80%, with runners and risers adding to metal consumption.

Scrap and Rework Costs

  • Defect Rate: Typical ductile iron sand casting defect rates are 2–5%, but poor process control can increase this significantly.
  • Scrap Costs: Scrap metal can be remelted, but energy and rework add costs (recycling efficiency ~95% of original material properties).

8. Applications of Ductile Iron Sand Casting

Ductile iron sand casting is widely used across multiple industries due to its combination of strength, қаттылық, тозуға төзімділік, және экономикалық тиімділік.

Its ability to achieve complex geometries through sand casting while maintaining excellent mechanical properties makes it a preferred choice for medium-to-large components.

Ductile Iron Sand Casting Pipe Couplings
Ductile Iron Sand Casting Pipe Couplings

Автомобиль өнеркәсібі

  • Қозғалтқыш компоненттері: Ик-жағалаулар, Камшектер, Цилиндр бастары, exhaust manifolds, and engine blocks.
  • Suspension and Steering: Рульдік ілгектер, Бақылау қарулары, хабтар, және жақшалар.
  • Transmission Components: Редукторлар, flywheel housings, and clutch components.

Infrastructure and Municipal Applications

  • Water and Sewer Systems: Құбыр арматуралары, клапандар, hydrants, және фланецтер.
  • Манхол қақпақтары мен жақтаулары: The toughness of ductile iron ensures long life under heavy traffic loads.

Ауыр машиналар мен өндірістік жабдықтар

  • Pump and Compressor Housings: Ductile iron’s damping capacity and strength-to-weight ratio ensure vibration reduction and structural reliability.
  • Gearboxes and Bearing Housings: High wear resistance and excellent machinability reduce production and maintenance costs.
  • Hydraulic Components: Поршеньдер, Клапанның денелері, and cylinder components, which require both toughness and machinability.

Энергетика және электр қуатын өндіру

  • Жел турбиналық компоненттері: Hub castings, Редукторлар, and bearing supports.
  • Майлау & Gas Equipment: Wellhead components, Сорғы денелері, and valve housings where pressure and mechanical shock are factors.
  • Electric Power Infrastructure: Transformer casings, motor frames, and generator housings.

Ауылшаруашылық және құрылыс жабдықтары

  • Tractor and Harvester Parts: Hubs, axle housings, counterweights, and gearbox casings.
  • Earthmoving and Mining Equipment: Components like track shoes, Спрокеттер, and coupler arms benefit from ductile iron’s abrasion resistance and impact toughness.

Басқа мамандандырылған қосымшалар

  • Railway and Marine: Brake components, муфталар, велопортерлер, және теңіз сорғысы.
  • Қорғаныш: Armored vehicle components and heavy-duty brackets, where both toughness and machinability are required.
  • Industrial Tools and Fixtures: Машина құралы негіздері, төсек төсектері, and precision fixtures due to ductile iron’s vibration damping.

9. Comparison with Other Casting Methods

Әр өлшемдер Темірді темір құю Инвестициялық құю Жоғалған көбік құю Қабықшаны құю
Бетті аяқтау Ra 12–25 μm (requires machining) Ra 3-6 мкм (excellent finish) (Жақсы аяқтау)
РА 6-12 мкм
(Жақсы аяқтау)
РА 6-12 мкм
Өлшемді төзімділік ± 0,5-1,5 мм (moderate precision) ± 0,1-0,3 мм (Жоғары дәлдік) ± 0,3-0,5 мм (moderate-high precision) ±0.2–0.5 mm (Жоғары дәлдік)
Part Size Capability Up to several tons (very large castings possible) Әдетте <50 кг (limited by ceramic shell) Medium to large (up to ~100 kg) Кішкентай орта (<20 кг)
Құралдардың құны Төменге дейін Биік (wax pattern molds and shells) Байсалды Байсалды
Өндіріс көлемі Төменнен жоғары (cost-effective for large runs) Төменнен орташа Орташа Орташа
Материалдық диапазон
Кең (all ductile iron grades, ferrous alloys) Кең (Тот баспайтын болаттар, СуперАлларды, -Ден) Limited to ferrous and some non-ferrous alloys Кең (ferrous and some non-ferrous alloys)
Күртекс Амал (cores needed for internal cavities) Өте жоғары (күрделі пішіндер, Жіңішке қабырғалар) Биік (complex shapes with fewer cores) Биік (thin-walled precision castings)
Механикалық қасиеттері Үздік (graphite nodules enhance ductility) Үздік (dense structure, fine grains) Жақсы (moderate grain structure control) Жақсы (better than sand casting)
Бір бөлігіне Төменнен орташа Биік (due to tooling and shell process) Амал Амал
Тоқтау 2–6 weeks (depending on tooling) 4-12 апта 3–8 weeks 3–8 weeks

10. Қорытынды

Ductile iron sand casting blends economic tooling with tight control over metallurgy to deliver parts that offer the strength of steel, the machinability of iron, and excellent fatigue life.

By understanding the interplay of pattern design, melt chemistry, күшейту, және әрлеу, manufacturers can produce reliable, cost‑effective components for automotive, Инфрақұрылым, and heavy‑industry applications.

As innovations in simulation, Қосымша құрал-жабдық, and process automation advance, ductile iron sand casting will continue to serve as a versatile workhorse in modern foundries.

Бұл антилондық темір құю ​​бойынша қызметтер ұсынады

-Та Осы, Біз жоғары сапалы киюге арналған темір құймаларын, құю технологияларының жетілдірілген технологияларының толық спектрін қолдана отырып, мамандандырамыз.

Сіздің жобаңыз икемділікті талап ете ме Жасыл құмды құю, дәлдік қабық немесе Инвестициялық құю, Күш пен дәйектілік металл көлі (тұрақты көгеру) кастинг, немесе тығыздық пен тазалық центрифугал жіне Жоғалған көбік құю,

Осы Инженерлік сараптама және өндірістік қуаттылығы сіздің нақты сипаттамаларыңызға сәйкес келеді.

Біздің мекеме прототиптің дамуынан барлық нәрсені жоғары көлемді өндіріске дейін шешуге арналған, қатаң қолдау көрсетеді Сапаны бақылау, материалдық бақылау, жіне Металлургиялық талдау.

-Ден Автомобиль және энергетикалық секторлар қарай Инфрақұрылым және ауыр машиналар, Осы Металлургиялық шеберлікті біріктіретін арнайы кастинг шешімдерін береді, өлшемді дәлдік, және ұзақ мерзімді қойылым.

Бізбен хабарласыңы!

ЖҚС

What is ductile iron sand casting?

Ductile iron sand casting is a manufacturing process where molten ductile iron is poured into a sand mold to create parts with high strength, икемділік, және қарсылық киіңіз.

The graphite in ductile iron forms as spherical nodules, unlike the flakes in gray iron, resulting in superior mechanical properties.

What makes ductile iron different from gray iron?

The main difference is the shape of graphite. In ductile iron, graphite appears as round nodules, which reduce stress concentration and improve tensile strength, іуу, and impact toughness.

Мысалы, ductile iron can achieve elongation up to 18% compared to gray iron’s <2%.

Why is sand casting used for ductile iron?

Sand casting is cost-effective for medium-to-large components, accommodates complex shapes using cores, and can produce castings weighing from a few kilograms to several tons.

It is ideal for automotive, Ауыр машиналар, and infrastructure parts where strength and affordability are key.

What is the best material for sand casting?

Common materials for sand casting include ferrous metals like ductile iron, сұр темір, Көміртекті болат, and non-ferrous metals such as aluminum and bronze.

The best choice depends on the application’s mechanical requirements and cost.

Жоғарыға жылжыңыз