1. Рэзюмэ
Інвестыцыйнае ліццё (lost-wax casting) is prized for shape accuracy, thin sections and complex geometry.
The choice of alloy is the single most important design decision because it determines: which materials and melting/degassing practices the foundry must use; the shell chemistry and firing cycles;
feeding and shrinkage strategy; achievable mechanical properties and required post-casting heat treatments; inspection and acceptance tests; and ultimately part cost and lead time.
This article examines the principal families of alloys commonly cast by the investment process, compares their metallurgical behaviors and processing implications, and provides pragmatic selection guidance tied to typical applications.
2. Why material selection matters in investment casting
Material selection is the single most consequential engineering decision in Інвестыцыйнае ліццё. It determines not only the in-service performance of the finished part (моц, Каразія супраціву, высокатэмпературная ўстойлівасць, біялагічная сумяшчальнасць, вага),
but also the entire upstream and downstream manufacturing chain: melting and pouring method, shell chemistry and firing, gating/riser strategy, defect modes to watch for, required heat treatments, метады агляду, час цыкла, scrap risk and total cost.

3. Material families used in investment casting
| Сям'я | Агульныя гатункі / прыклады | Typical density (г·см⁻³) | Плаўленне / Liquidus (° С) | Моц & niche |
| Аўстэнітныя нержавеючыя сталі | 304, 316L, Cf3, Cf3m | 7.9 | ~1,400–1,450 | Ўстойлівасць да карозіі, ease of casting |
| Precipitation-hardening stainless | 17-4 Ph (Асі 630) | 7.8 | ~1,350–1,420 | High strength after aging |
| Дуплекс / Супердуплекс | 2205, 2507 | ~ 7.8 | ~1,350–1,450 | Высокая сіла + ўстойлівасць да выязваўлення |
| Мартэнсітная нержавеючая сталь / інструментальныя сталі | 410/420, H13, 440C | 7.7–7.9 | 1,300–1,450 (вар'іруецца) | Насіць, тэрмаўстойлівасць (інструмента) |
| Вуглярод / Сталь з нізкім сплавам | 1020–4140, WCB | 7.8 | ~1,420–1,540 | Структны, меншы кошт |
Nickel-base superalloys |
Умова 718, 625, 738 | 8.2–8.4 | 1,350–1 400 (718), liquidus up to ~1,400–1,450+ | Трываласць да высокіх тэмператур, паўзу |
| Cobalt-base alloys | Co-Cr-Mo (ASTM F75) | ~8.3–8.9 | ~1,260–1,350 | Насіць, biomedical implants |
| Copper-base alloys (bronze/brass) | Алюмініевая бронза, З-зн, З намі | 8.4–8,9 | 900–1,080 | Праводнасць, падшыпнікі паверхняў |
| Тытанавыя сплавы | Ti-6Al-4V | 4.4 | melting ~1,650 | High strength-to-weight, біясумяшчальны |
| Алюмініевыя сплавы | A356 (абмежаваны) | 2.7 | ~580–660 | Лёгкі, low strength vs others |
| Каштоўныя металы | 18K gold, стерлингового срэбра, Pt-alloys | Au 19.3, аг 10.5 | Au melt 1,064 | Ювелірныя вырабы, электрычныя кантакты |
4. Casting Alloy Materials — Determining the Final Performance of Castings
When selecting an alloy for a casting you must consider a set of interdependent factors: неабходныя механічныя ўласцівасці (моц, вынослівасць, стомленасць), operating environment (тэмпература, агрэсіўныя сродкі масавай інфармацыі),
геаметрыя (thin walls vs massive sections), тэхналагічнасць (цякучасць, freezing range, рэактыўнасць), post-cast processing (тэрмічная апрацоўка, Бядро), inspection needs and cost.
Ferrous alloy castings
1) Carbon-steel ліхі
What they are: low-alloy steels where carbon is the primary strengthening element (e.g., AISI 1020–1045, ASTM A216 WCB, эквіваленты).
Ўласцівасці & выкананне: Умераная сіла, good toughness when normalized, excellent machinability and low cost. Density ~7.85 g/cm³.
Casting considerations: modest melting point (~1,420–1,540 °C), good fluidity for many geometries but susceptible to shrinkage porosity in heavy sections.
Shell and gating design must provide adequate feeding. Hydrogen and graphite formation can be concerns for some grades.
Пост-апрацоўка: нармалізацыя, патушыць & нораў (у залежнасці ад гатунку) to achieve desired hardness/strength.
Прыкладанне: Структурныя кампаненты, дапрацоўкі, general engineering castings where corrosion resistance is not critical.
2) Alloy-steel ліхі
What they are: steels alloyed with Cr, Мо, У, V, і г.д., для паляпшэння трываласці, hardenability and elevated-temperature properties (e.g., 4140, 4340 family analogs).
Ўласцівасці & выкананне: больш высокая трываласць на разрыў, fatigue resistance and toughness than plain carbon steels; can be heat-treated to high strengths.
Casting considerations: higher sensitivity to segregation and hot-cracking as alloy content rises; careful gating and risering needed; some alloys require vacuum or deoxidized melts for soundness.
Пост-апрацоўка: critical quench/temper cycles, control of distortion during heat treatment. May require stress relief and tempering to balance properties.
Прыкладанне: перадачы, шахты, high-stressed structural parts, oil-field components.
3) Нержавеючая сталь ліхі
What they are: iron-based alloys with ≥10.5% Cr; families include austenitic (304/316/CF8/CF8M), мартенситный (410/420), дуплекс (2205) і ападкава-гартавальная (17-4 Ph).
Ўласцівасці & выкананне: corrosion resistance ranges from general (austenitics) to high chloride resistance (дуплекс/супердуплекс);
mechanical properties vary widely — duplex offers high strength + Добрая ўстойлівасць да карозіі; 17-4 PH offers high strength after aging.

Casting considerations: stainless melts form oxide/slag; control of melt chemistry, deoxidation and inclusion removal matters for surface finish and mechanical properties.
Solidification shrinkage and hot tear susceptibility differ across grades.
Пост-апрацоўка: раствор адпалу, quench and aging (for PH grades); duplex may require careful heat treatment to keep phase balance. Passivation and pickling often follow machining.
Прыкладанне: chemical plant components, клапаны, Марскае абсталяванне, sanitary parts, апрацоўка харчовых прадуктаў, Медыцынскія прылады.
Non-ferrous alloy castings
4) Aluminum-alloy ліхі
What they are: Al-si, Al-Cu and Al-Mg families (e.g., A356, A357, ADC12, 6061-тыпу) for cast components.
Ўласцівасці & выкананне: нізкая шчыльнасць (~2,7 г/см³), good specific strength (after heat treat for some alloys), excellent corrosion resistance when alloyed properly; выдатная цепла/электраправоднасць.
Casting considerations: very good fluidity enables thin walls and fine detail, but hydrogen porosity, oxide films and hot tearing in certain conformations are key risks.
Shell firing temperatures and dewax schedules differ from ferrous work. Hydrogen control, melt cleanliness and proper gating are essential.
Пост-апрацоўка: solution heat treatment and artificial aging (T6) для трываласці; sometimes HIP for critical aerospace parts.
Прыкладанне: аэракасмічныя карпусы, automotive lightweight components, heat-dissipating parts.
5) Copper-base alloys (бронза, мосенж, алюмініевая бронза)
What they are: З-зн (бронза), Cu-Zn (мосенж), Cu-Al (алюмініевая бронза), З намі, і варыянты.
Ўласцівасці & выкананне: Выдатная каразійная ўстойлівасць (especially Cu-Ni/Al-bronze), good bearing properties and thermal/electrical conductivity. Density ~8.4–8.9 g/cm³.

Casting considerations: lower melting points than steels; high thermal conductivity affects solidification behavior (fast cooling).
Good fluidity makes fine detail feasible. Shrinkage and hot cracking risk depend on alloy composition.
Пост-апрацоўка: annealing for ductility, machining is often difficult (Праца ўцяплення); surface finishing and dezincification concerns for brasses exposed to certain environments.
Прыкладанне: Марскае абсталяванне, Кампаненты помпы, арыентыроўка, decorative and electrical parts.
6) Тытан-alloy castings
What they are: principally Ti-6Al-4V and other Ti alloys offering high specific strength and biocompatibility.
Ўласцівасці & выкананне: excellent strength-to-weight, corrosion resistance and biocompatibility; нізкая шчыльнасць (~4.4 g/cm³).

Casting considerations: highly reactive melt (кісларод, nitrogen pickup) — vacuum/argon melting and pour required to avoid embrittlement and inclusions.
Solidification shrinkage and oxide formation demand specialized shell materials and melting practices. Production costs and equipment requirements are high.
Пост-апрацоўка: vacuum heat treatment, Стрэс дапамогі, HIP common to close porosity for critical components. Surface finishing is important for fatigue-sensitive parts.
Прыкладанне: aerospace structural components, медыцынскія імпланты, high-performance sporting goods.
High-temperature alloy castings
7) Nickel-base superalloys
What they are: Ni-Cr-Co-Al-Ti based alloys (Умова, Рэнэ, Nimonic families) designed for strength and creep resistance at elevated temperatures (up to ~1,000 °C and beyond for some alloys).
Ўласцівасці & выкананне: excellent creep strength, oxidation and corrosion resistance at high temperature; density around 8.2–8.5 g/cm³.

Casting considerations: long solidification ranges promote segregation and shrinkage defects; вакуумная індукцыйная плаўка, strict de-gassing and inclusion control are critical.
Directional solidification and single-crystal casting are specialized variants for turbine blades (different process chain).
Пост-апрацоўка: complex solution and aging heat treatments to develop γ′ precipitates; HIP and machining are common. Certification for aerospace sectors requires tight NDT.
Прыкладанне: gas-turbine hot-section parts, аэракасмічная, пакаленне электраэнергіі, high-temperature chemical processing.
8) Cobalt-base alloys
What they are: Co-Cr-Mo and related compositions used where wear and elevated-temperature strength are required (e.g., stellite family).
Ўласцівасці & выкананне: good hot hardness, wear resistance and corrosion resistance. Often used where sliding wear at elevated temperature is present.
Casting considerations: high melting points and sensitivity to segregation; machining is challenging due to high hardness.
Пост-апрацоўка: solution/aging (where applicable), grinding and polishing for tribological surfaces.
Прыкладанне: turbine seals, сядла клапанаў, biomedical dental alloys (Са-кр), знос кампанентаў.
9) Iron-based high-temperature alloys
What they are: heat-resisting irons (e.g., Fe-Cr-Al, stainless steels formulated for elevated temperature).
Ўласцівасці & выкананне: cost-effective at moderate high temperatures, good oxidation resistance with suitable alloying.
Casting considerations & прыкладанне: used where temperatures are high but extreme creep resistance of nickel alloys is not required (e.g., часткі печы, some industrial burners).
Special-purpose alloy castings
Precious-metal alloys (золата, срэбра, плаціна)
What they are: Au, Ag and Pt alloys for jewelry, precision contacts and catalytic uses.
Ўласцівасці & выкананне: excellent corrosion resistance and aesthetic properties; variable mechanical strength depending on karat and alloying.
Casting considerations: нізкія тэмпературы плаўлення (gold ~1,064 °C), Выдатная цякучасць; vacuum or controlled atmosphere casting improves surface finish.
Інвестыцыйнае ліццё (Страчаны WAX) is the dominant manufacturing route for jewelry.
Прыкладанне: ювелірныя вырабы, electronics contacts, decorative and specialty chemical uses.
Magnetic alloys (Al-Ni-Co, Nd-Fe-B variants)
What they are: permanent-magnet materials and soft magnetic alloys; нататка: many high-energy magnets (Nd-Fe-B) are not commonly made by investment casting because powder and consolidation processes are typical. Al-Ni-Co can be cast.
Ўласцівасці & выкананне: magnetic coercivity, flux density and temperature stability determine suitability.
Casting considerations: magnetic alloys require controlled solidification to avoid unwanted phases; post-magnetization processing required.
Прыкладанне: датчыкі, маторы, інструментарыя.
Shape-memory alloys (Ni-Ti / Nitinol)
What they are: near-equiatomic nickel-titanium alloys with shape-memory and superelastic behavior.
Ўласцівасці & выкананне: reversible martensitic transformations produce large recoverable strains; used in actuators and medical devices.
Casting considerations: Ni-Ti is reactive and sensitive to composition; vacuum melting and precision control of Ni/Ti ratio are critical;
often produced via investment casting for complex geometries but powder-metallurgy and C-shape components are common. Post-cast heat treatment tailors transformation temperatures.
Прыкладанне: Медыцынскія прылады (стэнты, staples), actuators and adaptive structures.
5. Высновы
Material choice is the single most influential decision in investment casting.
It governs not only the in-service performance of a part (моц, стомленасць, карозія, тэмпературная здольнасць, біялагічная сумяшчальнасць, маса)
but also every practical aspect of manufacture: melting method, shell chemistry and firing, gating and feeding strategy, likely defect modes, required heat treatment and NDT, cost and lead time.
Ключ, actionable conclusions:
- Start with function, not habit. Define the dominating service drivers (тэмпература, карозія, насіць, Стомленасць жыцця, вага, regulatory constraints)
and let those map you to a material family (e.g., nickel alloys for high-temperature creep, titanium for strength-to-weight and biocompatibility, duplex stainless for chloride service, bronzes for marine wear, precious metals for jewelry/electrical contacts). - Match foundry capability to alloy demand. Many alloys (тытан, Суперліі, кобальтавыя сплавы) require vacuum or inert melting, Бядро, and advanced NDT.
Don’t specify an special alloy unless a qualified supplier can deliver and certify it. - Design and process are co-dependent. Alloy attributes (дыяпазон плаўлення, цякучасць, ўсаджвацца, рэактыўнасць, segregation tendency, цеплаправоднасць) must be used to set tooling compensation, gating/riser design, shell system and dewax/firing schedules.
Early simulation and pilot castings materially reduce risk. - Plan post-casting steps up front. Тэрмічная апрацоўка, Бядро, surface finishing and machining affect dimension control and cost.
Для важных кампанентаў, specify these steps in the RFQ (and include acceptance tests and traceability). - Control quality by specification. Require MTRs, heat-treatment records, defined NDT regimes (radiography/CT for internal porosity, ultrasonic for thick ferrous sections, dye-penetrant for surfaces), and a clearly stated acceptance standard.
Define limits for porosity, inclusions and mechanical properties. - Balance cost, schedule and risk. Special alloys and stringent acceptance protocols increase lead time and cost.
Use the simplest alloy that satisfies functional requirements and qualify alternatives where feasible.
FAQ
Can any metal be investment cast?
Many metals and alloys are suitable (сталі, нержавеючая, нікелевыя і кобальтавыя суперсплавы, медныя сплавы, алюміній, тытан, каштоўныя металы).
Аднак, suitability depends on foundry capability: reactive metals (тытан, магній) and high-melting superalloys require vacuum/inert melting and special shell systems.
Some magnet and powder-metallurgy alloys are not practical by conventional investment casting.
How do I choose between alloys when several meet performance needs?
Rank requirements (must-have vs desirable), then evaluate manufacturability (foundry capability, need for HIP or vacuum melt), каштаваць, lead time and inspection burden.
Pilot castings and life-cycle cost analysis help select the optimal trade-off.
Do all alloys need special shell materials or coatings?
Some do. Reactive or high-temperature melts (e.g., тытан, certain superalloys) may require inert face coats (цыркону, гліназём) and controlled firing to prevent metal-shell reactions.
Discuss shell formulation with your foundry during design.
How does alloy choice affect surface finish and machinability?
Metals like copper alloys and aluminium typically provide excellent surface finish and machinability; nickel and cobalt alloys are harder to machine and may require specialized tooling.
Stainless steels vary—duplex and PH grades machine differently than austenitics. Include machining allowance and tooling considerations in the design.
What about corrosion and environmental compatibility?
Corrosion performance is primarily a function of alloy chemistry and post-casting treatment (тэрмічная апрацоўка, пасівацыя, слой).
For aggressive media (хларыды, кіслоты), select corrosion-resistant alloys (дуплекс з нержавеючай сталі, нікелевыя сплавы) and require relevant qualification tests (аплавоў, SCC).
Environmental regulations (e.g., RoHS, restricted elements) can also affect alloy choice.
How much more does a superalloy casting cost vs a steel casting?
Costs vary widely by alloy, complexity and post-processing.
Superalloys and reactive metals commonly cost several times more than common steels due to expensive feedstock, vacuum furnaces, Бядро, and extended NDT.
Use total cost-of-ownership (матэрыял + апрацоўка + агляд + выхад) rather than raw melt price alone.



